State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China.
Hum Mol Genet. 2010 Apr 1;19(7):1199-210. doi: 10.1093/hmg/ddp590. Epub 2010 Jan 6.
Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3(G369C/+) mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3(G369C/+) cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3(G369C/+) BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3(G369C/+) mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH.
软骨发育不全症(ACH)是一种短肢侏儒症,由成纤维细胞生长因子受体 3(FGFR3)的功能获得性突变引起。先前的研究表明,ACH 患者的软骨生成受损,但 FGFR3 对 ACH 成人阶段的骨形成和骨重塑的影响尚未得到充分研究。使用微计算机断层扫描和组织形态计量学分析,我们发现 2 月龄的 Fgfr3(G369C/+)小鼠(模拟人类 ACH 的小鼠模型)由于小梁骨体积和骨矿物质密度减少、骨矿化缺陷、破骨细胞数量和活性增加而导致骨量减少。与野生型小鼠的骨髓基质细胞(BMSCs)原代培养物相比,Fgfr3(G369C/+)培养物显示细胞增殖减少,成骨分化增加,包括碱性磷酸酶活性和成骨细胞标记基因的上调,以及骨基质矿化减少。此外,我们的研究还表明,Fgfr3(G369C/+)BMSCs 中观察到的细胞增殖减少和增强的成骨分化是由 p38 磷酸化的上调引起的,而增强的 Erk1/2 活性是骨基质矿化受损的原因。此外,体外破骨细胞形成和骨吸收测定表明,来自 Fgfr3(G369C/+)小鼠的培养骨髓细胞中的破骨细胞数量和骨吸收面积增加。这些发现表明,FGFR3 的功能获得性突变通过调节成骨细胞和破骨细胞的活性导致骨量减少。我们的研究为 ACH 发病机制提供了新的见解。
J Biol Chem. 2016-11-25
Int J Mol Sci. 2025-4-10
Genes Dis. 2024-9-24
BMC Musculoskelet Disord. 2023-3-16
Int J Mol Sci. 2022-5-25
Crit Rev Eukaryot Gene Expr. 2009
Biochem Biophys Res Commun. 2008-11-21
J Clin Pathol. 2008-5
Front Biosci. 2008-1-1
Joint Bone Spine. 2008-3
Clin Genet. 2007-11
Proc Natl Acad Sci U S A. 2007-3-6