Suppr超能文献

人乙醇酸氧化酶与抑制剂4-羧基-5-[(4-氯苯基)硫基]-1,2,3-噻二唑复合物的结构

Structure of human glycolate oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole.

作者信息

Bourhis Jean Marie, Vignaud Caroline, Pietrancosta Nicolas, Guéritte Françoise, Guénard Daniel, Lederer Florence, Lindqvist Ylva

机构信息

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.

出版信息

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Dec 1;65(Pt 12):1246-53. doi: 10.1107/S1744309109041670. Epub 2009 Nov 27.

Abstract

Glycolate oxidase, a peroxisomal flavoenzyme, generates glyoxylate at the expense of oxygen. When the normal metabolism of glyoxylate is impaired by the mutations that are responsible for the genetic diseases hyperoxaluria types 1 and 2, glyoxylate yields oxalate, which forms insoluble calcium deposits, particularly in the kidneys. Glycolate oxidase could thus be an interesting therapeutic target. The crystal structure of human glycolate oxidase (hGOX) in complex with 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole (CCPST) has been determined at 2.8 A resolution. The inhibitor heteroatoms interact with five active-site residues that have been implicated in catalysis in homologous flavodehydrogenases of L-2-hydroxy acids. In addition, the chlorophenyl substituent is surrounded by nonconserved hydrophobic residues. The present study highlights the role of mobility in ligand binding by glycolate oxidase. In addition, it pinpoints several structural differences between members of the highly conserved family of flavodehydrogenases of L-2-hydroxy acids.

摘要

乙醇酸氧化酶是一种过氧化物酶体黄素酶,以消耗氧气为代价生成乙醛酸。当乙醛酸的正常代谢因导致1型和2型高草酸尿症这两种遗传性疾病的突变而受损时,乙醛酸会生成草酸盐,草酸盐会形成不溶性钙沉积物,尤其是在肾脏中。因此,乙醇酸氧化酶可能是一个有吸引力的治疗靶点。已确定人乙醇酸氧化酶(hGOX)与4-羧基-5-[(4-氯苯基)硫烷基]-1,2,3-噻二唑(CCPST)复合物的晶体结构,分辨率为2.8埃。抑制剂杂原子与五个活性位点残基相互作用,这些残基在L-2-羟基酸的同源黄素脱氢酶催化过程中发挥作用。此外,氯苯基取代基被非保守疏水残基包围。本研究突出了乙醇酸氧化酶中流动性在配体结合中的作用。此外,它还指出了L-2-羟基酸黄素脱氢酶高度保守家族成员之间的几个结构差异。

相似文献

1
Structure of human glycolate oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Dec 1;65(Pt 12):1246-53. doi: 10.1107/S1744309109041670. Epub 2009 Nov 27.
3
Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.
Biochemistry. 2008 Feb 26;47(8):2439-49. doi: 10.1021/bi701710r. Epub 2008 Jan 24.
6
Three-dimensional structures of glycolate oxidase with bound active-site inhibitors.
Protein Sci. 1997 May;6(5):1009-15. doi: 10.1002/pro.5560060506.
7
Involvement of ionizable groups in catalysis of human liver glycolate oxidase.
J Biol Chem. 2009 Nov 6;284(45):31214-22. doi: 10.1074/jbc.M109.040063. Epub 2009 Sep 16.
8
Exploring glycolate oxidase (GOX) as an antiurolithic drug target: molecular modeling and in vitro inhibitor study.
Int J Biol Macromol. 2011 Jul 1;49(1):62-70. doi: 10.1016/j.ijbiomac.2011.03.016. Epub 2011 Mar 30.
9
Structure of an active soluble mutant of the membrane-associated (S)-mandelate dehydrogenase.
Biochemistry. 2001 Aug 21;40(33):9870-8. doi: 10.1021/bi010938k.
10
Purification and characterization of recombinant human liver glycolate oxidase.
Arch Biochem Biophys. 2007 Sep 15;465(2):410-6. doi: 10.1016/j.abb.2007.06.021. Epub 2007 Jun 29.

引用本文的文献

1
Enhancing the Catalytic Activity of Glycolate Oxidase from through Semi-Rational Design.
Microorganisms. 2023 Jun 28;11(7):1689. doi: 10.3390/microorganisms11071689.
2
Further evidence in favour of a carbanion mechanism for glycolate oxidase.
FEBS Open Bio. 2023 May;13(5):938-950. doi: 10.1002/2211-5463.13534. Epub 2023 Mar 27.
3
HAO1-mediated oxalate metabolism promotes lung pre-metastatic niche formation by inducing neutrophil extracellular traps.
Oncogene. 2022 Jul;41(29):3719-3731. doi: 10.1038/s41388-022-02248-3. Epub 2022 Jun 23.
4
Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening.
Front Chem. 2022 May 4;10:844598. doi: 10.3389/fchem.2022.844598. eCollection 2022.
5
Perspectives in primary hyperoxaluria - historical, current and future clinical interventions.
Nat Rev Urol. 2022 Mar;19(3):137-146. doi: 10.1038/s41585-021-00543-4. Epub 2021 Dec 8.
6
Dual Glycolate Oxidase/Lactate Dehydrogenase A Inhibitors for Primary Hyperoxaluria.
ACS Med Chem Lett. 2021 May 20;12(7):1116-1123. doi: 10.1021/acsmedchemlett.1c00196. eCollection 2021 Jul 8.
7
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias.
J Pers Med. 2021 Jan 27;11(2):74. doi: 10.3390/jpm11020074.
8
Novel therapeutic approaches for the primary hyperoxalurias.
Pediatr Nephrol. 2021 Sep;36(9):2593-2606. doi: 10.1007/s00467-020-04817-8. Epub 2020 Nov 6.
9
Molecular basis of primary hyperoxaluria: clues to innovative treatments.
Urolithiasis. 2019 Feb;47(1):67-78. doi: 10.1007/s00240-018-1089-z. Epub 2018 Nov 14.
10
Molecular therapy of primary hyperoxaluria.
J Inherit Metab Dis. 2017 Jul;40(4):481-489. doi: 10.1007/s10545-017-0045-3. Epub 2017 Apr 19.

本文引用的文献

1
Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.
Biochemistry. 2008 Feb 26;47(8):2439-49. doi: 10.1021/bi701710r. Epub 2008 Jan 24.
2
Purification and characterization of recombinant human liver glycolate oxidase.
Arch Biochem Biophys. 2007 Sep 15;465(2):410-6. doi: 10.1016/j.abb.2007.06.021. Epub 2007 Jun 29.
3
Crystallographic study on the interaction of L-lactate oxidase with pyruvate at 1.9 Angstrom resolution.
Biochem Biophys Res Commun. 2007 Jul 13;358(4):1002-7. doi: 10.1016/j.bbrc.2007.05.021. Epub 2007 May 11.
4
The 2.1 A structure of Aerococcus viridans L-lactate oxidase (LOX).
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Dec 1;62(Pt 12):1185-90. doi: 10.1107/S1744309106044678. Epub 2006 Nov 4.
5
The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1A resolution reveals the mechanism of strict substrate recognition.
Biochem Biophys Res Commun. 2006 Nov 17;350(2):249-56. doi: 10.1016/j.bbrc.2006.09.025. Epub 2006 Sep 18.
6
Crystal structure analysis of recombinant rat kidney long chain hydroxy acid oxidase.
Biochemistry. 2005 Feb 8;44(5):1521-31. doi: 10.1021/bi048616e.
7
Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68. doi: 10.1107/S0907444904026460. Epub 2004 Nov 26.
8
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
9
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验