Suppr超能文献

一种用于从实时三维超声心动图中进行左心室分割的动态形状先验模型。

A Dynamical Shape Prior for LV Segmentation from RT3D Echocardiography.

作者信息

Zhu Yun, Papademetris Xenophon, Sinusas Albert J, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University, USA.

出版信息

Med Image Comput Comput Assist Interv. 2009;5761:206-213. doi: 10.1007/978-3-642-04268-3_26.

Abstract

Real-time three-dimensional (RT3D) echocardiography is the newest generation of three-dimensional (3-D) echocardiography. Segmentation of RT3D echocardiographic images is essential for determining many important diagnostic parameters. In cardiac imaging, since the heart is a moving organ, prior knowledge regarding its shape and motion patterns becomes an important component for the segmentation task. However, most previous cardiac models are either static models (SM), which neglect the temporal coherence of a cardiac sequence or generic dynamical models (GDM), which neglect the inter-subject variability of cardiac motion. In this paper, we present a subject-specific dynamical model (SSDM) which simultaneously handles inter-subject variability and cardiac dynamics (intra-subject variability). It can progressively predict the shape and motion patterns of a new sequence at the current frame based on the shapes observed in the past frames. The incorporation of this SSDM into the segmentation process is formulated in a recursive Bayesian framework. This results in a segmentation of each frame based on the intensity information of the current frame, as well as on the prediction from the previous frames. Quantitative results on 15 RT3D echocardiographic sequences show that automatic segmentation with SSDM is superior to that of either SM or GDM, and is comparable to manual segmentation.

摘要

实时三维(RT3D)超声心动图是新一代的三维(3-D)超声心动图。RT3D超声心动图图像的分割对于确定许多重要的诊断参数至关重要。在心脏成像中,由于心脏是一个运动的器官,关于其形状和运动模式的先验知识成为分割任务的一个重要组成部分。然而,大多数先前的心脏模型要么是静态模型(SM),它忽略了心脏序列的时间连贯性;要么是通用动力学模型(GDM),它忽略了心脏运动的个体间变异性。在本文中,我们提出了一种特定于个体的动力学模型(SSDM),它同时处理个体间变异性和心脏动力学(个体内变异性)。它可以基于过去帧中观察到的形状逐步预测当前帧中新序列的形状和运动模式。将这种SSDM纳入分割过程是在递归贝叶斯框架中制定的。这导致基于当前帧的强度信息以及前一帧的预测对每一帧进行分割。对15个RT3D超声心动图序列的定量结果表明,使用SSDM进行自动分割优于SM或GDM,并且与手动分割相当。

相似文献

1
A Dynamical Shape Prior for LV Segmentation from RT3D Echocardiography.
Med Image Comput Comput Assist Interv. 2009;5761:206-213. doi: 10.1007/978-3-642-04268-3_26.
2
A dynamical shape prior for LV segmentation from RT3D echocardiography.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):206-13.
3
Segmentation of Left Ventricle From 3D Cardiac MR Image Sequences Using A Subject-Specific Dynamical Model.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008;2008:1-8. doi: 10.1109/CVPR.2008.4587433.
4
Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model.
IEEE Trans Med Imaging. 2010 Mar;29(3):669-87. doi: 10.1109/TMI.2009.2031063. Epub 2009 Sep 29.
5
Bidirectional segmentation of three-dimensional cardiac MR images using a subject-specific dynamical model.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):450-7. doi: 10.1007/978-3-540-85990-1_54.
6
Assessment of regional wall motion abnormalities with real-time 3-dimensional echocardiography.
J Am Soc Echocardiogr. 1999 Jan;12(1):7-14. doi: 10.1016/s0894-7317(99)70167-7.
7
Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):44-51. doi: 10.1007/978-3-540-75757-3_6.
8
Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging.
Circulation. 2004 Sep 28;110(13):1814-8. doi: 10.1161/01.CIR.0000142670.65971.5F. Epub 2004 Sep 20.
9
Real-time three-dimensional echocardiography for measurement of left ventricular volumes.
Am J Cardiol. 1999 Dec 15;84(12):1434-9. doi: 10.1016/s0002-9149(99)00591-3.
10
A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint.
Med Image Anal. 2010 Jun;14(3):429-48. doi: 10.1016/j.media.2010.02.005. Epub 2010 Mar 15.

引用本文的文献

1
A new inverse method for estimation of in vivo mechanical properties of the aortic wall.
J Mech Behav Biomed Mater. 2017 Aug;72:148-158. doi: 10.1016/j.jmbbm.2017.05.001. Epub 2017 May 2.
2
Radial basis functions for combining shape and speckle tracking in 4D echocardiography.
IEEE Trans Med Imaging. 2014 Jun;33(6):1275-89. doi: 10.1109/TMI.2014.2308894.
3
Contour tracking in echocardiographic sequences via sparse representation and dictionary learning.
Med Image Anal. 2014 Feb;18(2):253-71. doi: 10.1016/j.media.2013.10.012. Epub 2013 Nov 6.
4
A dynamical appearance model based on multiscale sparse representation: segmentation of the left ventricle from 4D echocardiography.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):58-65. doi: 10.1007/978-3-642-33454-2_8.
5
Ultrasonic image analysis and image-guided interventions.
Interface Focus. 2011 Aug 6;1(4):673-85. doi: 10.1098/rsfs.2011.0025. Epub 2011 Jun 15.
6
Adaptively learning local shape statistics for prostate segmentation in ultrasound.
IEEE Trans Biomed Eng. 2011 Mar;58(3):633-41. doi: 10.1109/TBME.2010.2094195. Epub 2010 Nov 22.

本文引用的文献

2
A general statistical model for ultrasonic backscattering from tissues.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(3):727-36. doi: 10.1109/58.842062.
3
Segmenting and tracking the left ventricle by learning the dynamics in cardiac images.
Inf Process Med Imaging. 2005;19:553-65. doi: 10.1007/11505730_46.
4
Ultrasound image segmentation: a survey.
IEEE Trans Med Imaging. 2006 Aug;25(8):987-1010. doi: 10.1109/tmi.2006.877092.
5
Dynamical statistical shape priors for level set-based tracking.
IEEE Trans Pattern Anal Mach Intell. 2006 Aug;28(8):1262-73. doi: 10.1109/TPAMI.2006.161.
6
Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):402-10. doi: 10.1007/11566489_50.
7
Automatic segmentation of echocardiographic sequences by active appearance motion models.
IEEE Trans Med Imaging. 2002 Nov;21(11):1374-83. doi: 10.1109/TMI.2002.806427.
8
Estimation of 3-D left ventricular deformation from medical images using biomechanical models.
IEEE Trans Med Imaging. 2002 Jul;21(7):786-800. doi: 10.1109/TMI.2002.801163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验