Suppr超能文献

一种独立式拟人化经股假肢的初步评估

Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis.

作者信息

Sup Frank, Varol Huseyin Atakan, Mitchell Jason, Withrow Thomas J, Goldfarb Michael

机构信息

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA.

出版信息

IEEE ASME Trans Mechatron. 2009;14(6):667-676. doi: 10.1109/TMECH.2009.2032688.

Abstract

This paper presents a self-contained powered knee and ankle prosthesis, intended to enhance the mobility of transfemoral amputees. A finite-state based impedance control approach, previously developed by the authors, is used for the control of the prosthesis during walking and standing. Experiments on an amputee subject for level treadmill and overground walking are described. Knee and ankle joint angle, torque, and power data taken during walking experiments at various speeds demonstrate the ability of the prosthesis to provide a functional gait that is representative of normal gait biomechanics. Measurements from the battery during level overground walking indicate that the self-contained device can provide more than 4500 strides, or 9 km, of walking at a speed of 5.1 km/h between battery charges.

摘要

本文介绍了一种独立供电的膝踝假肢,旨在提高经股骨截肢者的行动能力。作者先前开发的基于有限状态的阻抗控制方法用于在行走和站立过程中控制假肢。描述了在一名截肢者身上进行的水平跑步机和地面行走实验。在不同速度的行走实验中采集的膝关节和踝关节角度、扭矩及功率数据表明,该假肢能够提供代表正常步态生物力学的功能性步态。在水平地面行走过程中对电池的测量表明,该独立装置在两次充电之间,以5.1公里/小时的速度行走时,能够提供超过4500步,即9公里的行走能力。

相似文献

1
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis.
IEEE ASME Trans Mechatron. 2009;14(6):667-676. doi: 10.1109/TMECH.2009.2032688.
2
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee.
IEEE Int Conf Rehabil Robot. 2009 Jun 23;2009:638-644. doi: 10.1109/ICORR.2009.5209625.
3
Running with a powered knee and ankle prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2015 May;23(3):403-12. doi: 10.1109/TNSRE.2014.2336597. Epub 2014 Jul 9.
4
Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds.
IEEE J Transl Eng Health Med. 2014 Jul 25;2:2100412. doi: 10.1109/JTEHM.2014.2343228. eCollection 2014.
5
A preliminary investigation of powered prostheses for improved walking biomechanics in bilateral transfemoral amputees.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4164-7. doi: 10.1109/EMBC.2012.6346884.
6
A walking controller for a powered ankle prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6203-6. doi: 10.1109/EMBC.2014.6945046.
7
Preliminary Analysis Of Positive Knee Energy Injection In A Transfemoral Amputee Walking With A Powered Prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1821-1824. doi: 10.1109/EMBC.2018.8512726.
8
A powered prosthetic intervention for bilateral transfemoral amputees.
IEEE Trans Biomed Eng. 2015 Apr;62(4):1042-50. doi: 10.1109/TBME.2014.2334616. Epub 2014 Jul 2.
9
Effects of a Powered Knee-Ankle Prosthesis on Amputee Hip Compensations: A Case Series.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2944-2954. doi: 10.1109/TNSRE.2020.3040260. Epub 2021 Jan 28.
10
Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2504-7. doi: 10.1109/EMBC.2014.6944131.

引用本文的文献

1
Improving Device Testing Efficiency in Prosthetic Research: The Impact of an Automated Robustness Testing Protocol.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2024 Sep;2024:1790-1794. doi: 10.1109/biorob60516.2024.10719785. Epub 2024 Oct 23.
2
Neuromechanical force-based control of a powered prosthetic foot.
Wearable Technol. 2020 Oct 23;1:e6. doi: 10.1017/wtc.2020.6. eCollection 2020.
3
Adaptive estimation of continuous gait phase based on capacitive sensors.
Wearable Technol. 2022 Jun 17;3:e11. doi: 10.1017/wtc.2022.4. eCollection 2022.
5
Multivariate CNN Model for Human Locomotion Activity Recognition with a Wearable Exoskeleton Robot.
Bioengineering (Basel). 2023 Sep 13;10(9):1082. doi: 10.3390/bioengineering10091082.
6
A Review of Current State-of-the-Art Control Methods for Lower-Limb Powered Prostheses.
Annu Rev Control. 2023;55:142-164. doi: 10.1016/j.arcontrol.2023.03.003. Epub 2023 Apr 3.
7
Powered knee and ankle prosthesis use with a K2 level ambulator: a case report.
Front Rehabil Sci. 2023 Jun 14;4:1203545. doi: 10.3389/fresc.2023.1203545. eCollection 2023.
9
The Design and Testing of a PEA Powered Ankle Prosthesis Driven by EHA.
Biomimetics (Basel). 2022 Dec 12;7(4):234. doi: 10.3390/biomimetics7040234.
10
Deep generative models with data augmentation to learn robust representations of movement intention for powered leg prostheses.
IEEE Trans Med Robot Bionics. 2019 Nov;1(4):267-278. doi: 10.1109/tmrb.2019.2952148. Epub 2019 Nov 7.

本文引用的文献

1
An electrohydraulic knee-torque controller for a prosthesis simulator.
J Biomech Eng. 1977 Feb 1;99(1):3-8. doi: 10.1115/1.3426266. Epub 2010 Oct 21.
2
Design and Control of an Active Electrical Knee and Ankle Prosthesis.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2008 Oct 19;2008:523-528. doi: 10.1109/BIOROB.2008.4762811.
3
Real-time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2009 Jan 27;2008:66-72. doi: 10.1109/BIOROB.2008.4762860.
4
Design and Control of a Powered Transfemoral Prosthesis.
Int J Rob Res. 2008 Feb 1;27(2):263-273. doi: 10.1177/0278364907084588.
5
Energy cost of walking measurements in subjects with lower limb amputations: a comparison study between floor and treadmill test.
Gait Posture. 2008 Jan;27(1):70-5. doi: 10.1016/j.gaitpost.2007.01.006. Epub 2007 Mar 13.
8
Rates of lower-extremity amputation and arterial reconstruction in the United States, 1979 to 1996.
Am J Public Health. 1999 Aug;89(8):1222-7. doi: 10.2105/ajph.89.8.1222.
9
Comparison of new approaches to estimate mechanical output of individual joints in vertical jumps.
J Biomech. 1998 Oct;31(10):951-5. doi: 10.1016/s0021-9290(98)00094-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验