Institute of Optics, University of Rochester, Rochester, New York 14627, USA.
Nano Lett. 2010 Feb 10;10(2):652-6. doi: 10.1021/nl9037505.
The control of optical fields on the nanometer scale is a central theme of plasmonics and nanophotonics. Methods for characterizing localized optical field distributions are necessary to validate theoretical predictions, to test nanofabrication procedures, and to provide feedback for design improvements. Typical methods of probing near fields (e.g., single molecule fluorescence and near-field microscopy) cannot probe both the complex-valued and vectorial nature of the field distributions. We demonstrate that a nanoparticle probe with isotropic polarizability in combination with polarization control of excitation and detection beams provides access to this information through the interaction tensor. For a sample consisting of a single nanoparticle we show that the recorded images correspond to maps of the local Green's function tensor elements that couple the probe and sample. The tensorial mapping of interacting nanoparticles is of interest for optical sensing, optical antennas, surface-enhanced Raman scattering, nonlinear optics, and molecular rulers.
纳米尺度上光场的控制是等离子体学和纳米光子学的一个核心主题。为了验证理论预测、测试纳米制造工艺,并为设计改进提供反馈,有必要对局部光场分布进行特征描述。探测近场的典型方法(例如单分子荧光和近场显微镜)无法探测场分布的复值和向量性质。我们证明,具有各向同性极化率的纳米粒子探针与激发和探测光束的偏振控制相结合,通过相互作用张量提供了获取此信息的途径。对于由单个纳米粒子组成的样品,我们表明记录的图像对应于局部格林函数张量元素的图谱,这些元素将探针和样品耦合起来。相互作用纳米粒子的张量映射对于光学传感、光学天线、表面增强拉曼散射、非线性光学和分子尺都很有意义。