Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
Chemistry. 2010 Feb 1;16(5):1464-9. doi: 10.1002/chem.200902538.
Crystallization of [Ag(14)(C[triple bond]CtBu)(12)Cl][BF(4)] and different polyoxometalates in organic solvents yields a series of new intercluster compounds: Ag(14)(C[triple bond]CtBu)(12)Cl(CH(3)CN)[W(6)O(19)] (1), (nBu(4)N)Ag(14)(C[triple bond]CtBu)(12)Cl(CH(3)CN)[PW(12)O(40)] (2), and Ag(14)(C[triple bond]CtBu)(12)ClAg(14)(C[triple bond]CtBu)(12)Cl(CH(3)CN)[SiMo(12)O(40)] (3). Applying the same technique to a system starting from polymeric {[Ag(3)(C[triple bond]CtBu)(2)][BF(4)]0.6 H(2)O}(n) and the polyoxometalate (nBu(4)N)(2)[W(6)O(19)] results in the formation of [Ag(14)(C[triple bond]CtBu)(12)(CH(3)CN)(2)][W(6)O(19)] (4). Here, the Ag(14) cluster is generated from polymeric {[Ag(3)(C[triple bond]CtBu)(2)][BF(4)]0.6 H(2)O}(n) during crystallization. In a similar way, [Ag(15)(C[triple bond]CtBu)(12)(CH(3)CN)(5)][PW(12)O(40)] (5) has been obtained from {[Ag(3)(C[triple bond]CtBu)(2)][BF(4)]0.6 H(2)O}(n) and (nBu(4)N)(3)[PW(12)O(40)]. The use of charged building blocks was intentional, because at these conditions the contribution of long-range Coulomb interactions would benefit most from full periodicity of the intercluster compound, thus favoring formation of well-crystalline materials. The latter has been achieved, indeed. However, as a most conspicuous feature, equally charged species aggregate, which demonstrates that the short-range interactions between the "surfaces" of the clusters represent the more powerful structure direction forces than the long-range Coulomb bonding. This observation is of significant importance for understanding the mechanisms underlying self-organization of monodisperse and structurally well-defined particles of nanometer size.
[Ag(14)(C[三键]CtBu)(12)Cl][BF(4)]和不同多金属氧酸盐在有机溶剂中的结晶生成了一系列新的聚簇化合物:Ag(14)(C[三键]CtBu)(12)Cl(CH(3)CN)[W(6)O(19)] (1)、(nBu(4)N)Ag(14)(C[三键]CtBu)(12)Cl(CH(3)CN)[PW(12)O(40)] (2)和Ag(14)(C[三键]CtBu)(12)ClAg(14)(C[三键]CtBu)(12)Cl(CH(3)CN)[SiMo(12)O(40)] (3)。应用相同的技术,从聚合物[{Ag(3)(C[三键]CtBu)(2)}][BF(4)]0.6 H(2)O}(n)和多金属氧酸盐(nBu(4)N)(2)[W(6)O(19)]开始的体系中生成了[Ag(14)(C[三键]CtBu)(12)(CH(3)CN)(2)][W(6)O(19)] (4)。在这里,Ag(14)簇是在结晶过程中从聚合物[{Ag(3)(C[三键]CtBu)(2)}][BF(4)]0.6 H(2)O}(n)生成的。同样,[Ag(15)(C[三键]CtBu)(12)(CH(3)CN)(5)][PW(12)O(40)] (5)也可以从[{Ag(3)(C[三键]CtBu)(2)}][BF(4)]0.6 H(2)O}(n)和(nBu(4)N)(3)[PW(12)O(40)]获得。使用带电构建块是有意的,因为在这些条件下,远程库仑相互作用的贡献将最受益于聚簇化合物的完全周期性,从而有利于形成结晶良好的材料。实际上已经实现了这一点。然而,作为一个最显著的特征,等电物种聚集,这表明簇的“表面”之间的短程相互作用代表了比远程库仑键更强有力的结构方向力。这一观察结果对理解纳米尺寸单分散和结构明确的颗粒自组织的机制具有重要意义。