Materials Chemistry, The Angstrom Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden.
J Chem Phys. 2009 Dec 28;131(24):244517. doi: 10.1063/1.3266507.
A two-dimensional quantum-mechanical vibrational model has been used to calculate the anharmonic OH vibrational frequencies in the layered Mg(OH)(2) (brucite) crystal. The underlying potential energy surface was generated by density functional theory (DFT) calculations. The resulting OH frequencies are upshifted (blueshifted) by about +75 cm(-1) with respect to the gas-phase OH frequency (+120 cm(-1) in experiments; the discrepancy is mainly due to inadequacies in the DFT and pseudopotential models). The Raman-IR split is about 50 cm(-1), both in the calculations and in experiments. We find that the blueshift phenomenon in brucite can qualitatively be explained by a parabolalike "OH frequency versus electric field" correlation curve pertaining to an OH(-) ion exposed to an electric field. We also find that it is primarily the neighbors within the Mg(OH)(2) layer that induce the blueshift while the interlayer interaction gives a smaller (and redshifting) contribution.
已采用二维量子力学振动模型来计算层状 Mg(OH)(2)(水镁石)晶体中的 OH 振动频率。该潜在的势能表面是通过密度泛函理论(DFT)计算生成的。与气相 OH 频率(实验中为+120 cm(-1);差异主要归因于 DFT 和赝势模型的不足)相比,所得 OH 频率向上偏移(蓝移)约+75 cm(-1)。在计算和实验中,拉曼-红外分裂约为 50 cm(-1)。我们发现,水镁石中的蓝移现象可以通过与 OH(-)离子暴露于电场相关的抛物线状“OH 频率与电场”相关曲线定性解释。我们还发现,主要是 Mg(OH)(2)层内的近邻诱导蓝移,而层间相互作用的贡献较小(且红移)。