Suppr超能文献

双头生物运动肌球蛋白 V 的综合物理机制。

Comprehensive physical mechanism of two-headed biomotor myosin V.

机构信息

Institute of Modern Physics, Fudan University, Shanghai 200433, China.

出版信息

J Chem Phys. 2009 Dec 28;131(24):245104. doi: 10.1063/1.3276283.

Abstract

Two-headed biomotor myosin V autonomously coordinates its two identical heads in fuel consumption and mechanical stepping, so that the dimerized motor as a whole gains the capability of processive, unidirectional movement along cytoskeletal filament. How the dimer-level functions like sustained direction rectification and autonomous coordination emerge out of physical principles poses an outstanding question pertinent to motor protein biology as well as the nascent field of bioinspired nanomotors. Here the comprehensive physical mechanism for myosin V motor is identified by a dimer-level free-energy analysis that is methodologically calibrated against experimental data. A hallmark of the identified mechanism is a mechanically mediated symmetry breaking that occurs at the dimer level and prevails against ubiquitous thermal fluctuations. Another character is the onset of substantial free-energy gaps between major dimer-track binding configurations. The symmetry breaking is the basis for myosin V's directional rectification, and the energy gaps facilitate autonomous head-head coordination. The mechanism explains the experimental finding that myosin V makes ATP-independent consecutive steps under high opposing loads but not under pushing loads. Interestingly, myosin V and another major biomotor kinesin 1 are found to share essentially the same core mechanism but for distinctly different working regimes.

摘要

双头生物运动肌球蛋白 V 能够自主协调其两个相同的头部在燃料消耗和机械步移方面的活动,从而使二聚体马达整体获得沿细胞骨架丝进行连续的单向运动的能力。二聚体水平的功能如何像持续的方向纠正和自主协调那样从物理原理中出现,这是一个悬而未决的问题,与肌球蛋白生物学以及新兴的仿生纳米马达领域都相关。通过对实验数据进行方法学校准的二聚体自由能分析,确定了肌球蛋白 V 马达的综合物理机制。所确定机制的一个特点是在二聚体水平上发生的机械介导的对称破缺,这种破缺普遍存在于热波动中。另一个特点是主要的二聚体轨道结合构型之间出现了大量的自由能间隙。对称破缺是肌球蛋白 V 定向整流的基础,而能量间隙则有利于自主的头对头协调。该机制解释了实验发现,即在高反向负载下,肌球蛋白 V 可以进行不依赖于 ATP 的连续步移,但在推动负载下则不行。有趣的是,发现肌球蛋白 V 和另一个主要的生物运动驱动蛋白 1 具有实质上相同的核心机制,但工作模式却截然不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验