School of Mathematics and Statistics, Wuhan University, Hubei 430072, China.
Chaos. 2009 Dec;19(4):043119. doi: 10.1063/1.3268587.
This paper investigates the generalized synchronization (GS) of two typical complex dynamical networks, small-world networks and scale-free networks, in terms of impulsive control strategy. By applying the auxiliary-system approach to networks, we demonstrate theoretically that for any given coupling strength, GS can take place in complex dynamical networks consisting of nonidentical systems. Particularly, for Barabasi-Albert scale-free networks, we look into the relations between GS error and topological parameter m, which denotes the number of edges linking to a new node at each time step, and find out that GS speeds up with increasing m. And for Newman-Watts small-world networks, the time needed to achieve GS decreases as the probability of adding random edges increases. We further reveal how node dynamics affects GS speed on both small-world and scale-free networks. Finally, we analyze how the development of GS depends on impulsive control gains. Some abnormal but interesting phenomena regarding the GS process are also found in simulations.
本文研究了两种典型的复杂网络(小世界网络和无标度网络)在脉冲控制策略下的广义同步(GS)。通过将辅助系统方法应用于网络,我们从理论上证明,对于任意给定的耦合强度,由非相同系统组成的复杂动力网络中可以发生 GS。特别是,对于 Barabasi-Albert 无标度网络,我们研究了 GS 误差与拓扑参数 m 之间的关系,其中 m 表示每个时间步连接到新节点的边数,并发现随着 m 的增加 GS 会加速。对于 Newman-Watts 小世界网络,随着随机边添加概率的增加,达到 GS 所需的时间减少。我们进一步揭示了节点动力学如何影响小世界和无标度网络上的 GS 速度。最后,我们分析了 GS 的发展如何取决于脉冲控制增益。在仿真中还发现了一些关于 GS 过程的异常但有趣的现象。