Unité de Neuroimagerie Fonctionnelle, Centre de recherche, Institut Universitaire de Gériatrie de Montréal, Department of Physiology, Université de Montréal, Montreal, Canada.
Neuroimage. 2010 Apr 15;50(3):1074-84. doi: 10.1016/j.neuroimage.2009.12.122. Epub 2010 Jan 11.
Functional MRI of the spinal cord is challenging due to the small cross section of the cord and high level of physiological noise. Though blood oxygenation level-dependent (BOLD) contrast has been used to study specific responses of the spinal cord to various stimuli, it has not been demonstrated using a controlled stimulus. In this paper, we use hypercapnic manipulation to study the sensitivity and specificity of functional MRI in the human cervical spinal cord. Simultaneous MR imaging in the brain and spinal cord was performed for direct comparison with the brain, in which responses to hypercapnia have been more extensively characterized. Original contributions include: (i) prospectively controlled hypercapnic changes in end-tidal PCO(2), (ii) simultaneous recording of BOLD responses in the brain and spinal cord, and (iii) generation of statistical maps of BOLD responses throughout the brain and spinal cord, taking into account physiological noise sources. Results showed significant responses in all subjects both in the brain and the spinal cord. In anatomically-defined regions of interest, mean percent changes were 0.6% in the spinal cord and 1% in the brain. Analysis of residual variance demonstrated significantly larger contribution of physiological noise in the spinal cord (P<0.005). To obtain more reliable results from fMRI in the spinal cord, it will be necessary to improve sensitivity through the use of highly parallelized coil arrays and better modeling of physiological noise. Finely, we believe that the use of controlled global stimuli, such as hypercapnia, will help assess the effectiveness of new acquisition techniques.
脊髓的功能磁共振成像具有挑战性,这是由于脊髓的横截面积小和高水平的生理噪声。尽管血氧水平依赖(BOLD)对比已被用于研究脊髓对各种刺激的特定反应,但尚未使用受控刺激来证明。在本文中,我们使用高碳酸血症操作来研究功能磁共振成像在人类颈段脊髓中的敏感性和特异性。同时在大脑和脊髓中进行磁共振成像,以便与大脑进行直接比较,在大脑中已经更广泛地描述了对高碳酸血症的反应。主要贡献包括:(i)预测性控制的终末 PCO2 中的高碳酸血症变化,(ii)大脑和脊髓中 BOLD 反应的同步记录,以及(iii)考虑生理噪声源,生成大脑和脊髓中 BOLD 反应的统计图。结果显示,所有受试者在大脑和脊髓中均有明显的反应。在解剖定义的感兴趣区域中,脊髓中的平均百分比变化为 0.6%,大脑中的平均百分比变化为 1%。残差方差分析表明,脊髓中的生理噪声贡献明显更大(P<0.005)。为了从脊髓的 fMRI 中获得更可靠的结果,有必要通过使用高度并行化的线圈阵列和更好的生理噪声模型来提高灵敏度。最后,我们认为使用诸如高碳酸血症之类的受控全局刺激将有助于评估新采集技术的有效性。