Suppr超能文献

miRNAs 对 Argonaute 蛋白的变构调控。

Allosteric regulation of Argonaute proteins by miRNAs.

机构信息

Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Nat Struct Mol Biol. 2010 Feb;17(2):144-50. doi: 10.1038/nsmb.1736. Epub 2010 Jan 10.

Abstract

Small interfering RNAs (siRNAs) and microRNAs (miRNAs) bind to Argonaute (AGO) family proteins to form a related set of effector complexes that have diverse roles in post-transcriptional gene regulation throughout the eukaryotic lineage. Here sequence and structural analysis of the MID domain of the AGO proteins identified similarities with a family of allosterically regulated bacterial ligand-binding domains. We used in vitro and in vivo approaches to show that certain AGO proteins (those involved in translational repression) have conserved this functional allostery between two distinct sites, one involved in binding miRNA-target duplex and the other in binding the 5' cap feature (m(7)GpppG) of eukaryotic mRNAs. This allostery provides an explanation for how miRNA-bound effector complexes may avoid indiscriminate repressive action (mediated through binding interactions with the cap) before full target recognition.

摘要

小干扰 RNA(siRNA)和 microRNA(miRNA)与 Argonaute(AGO)家族蛋白结合,形成一组相关的效应复合物,在真核生物谱系中具有多样化的转录后基因调控作用。在这里,通过对 AGO 蛋白的 MID 结构域进行序列和结构分析,发现其与一类变构调节的细菌配体结合域家族具有相似性。我们利用体外和体内方法表明,某些 AGO 蛋白(参与翻译抑制的蛋白)在两个不同的位点之间保留了这种功能变构,一个位点参与结合 miRNA 靶标双链,另一个位点参与结合真核 mRNA 的 5'帽特征(m(7)GpppG)。这种变构为 miRNA 结合的效应复合物如何在完全靶标识别之前避免无差别抑制作用(通过与帽结合的结合相互作用介导)提供了一种解释。

相似文献

1
Allosteric regulation of Argonaute proteins by miRNAs.
Nat Struct Mol Biol. 2010 Feb;17(2):144-50. doi: 10.1038/nsmb.1736. Epub 2010 Jan 10.
2
Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins.
RNA. 2012 Nov;18(11):2041-55. doi: 10.1261/rna.035675.112. Epub 2012 Sep 27.
3
Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target.
RNA. 2019 May;25(5):620-629. doi: 10.1261/rna.069328.118. Epub 2019 Feb 15.
5
Structural analysis of 5'-mRNA-cap interactions with the human AGO2 MID domain.
EMBO Rep. 2011 May;12(5):415-20. doi: 10.1038/embor.2011.48. Epub 2011 Apr 8.
6
A parsimonious model for gene regulation by miRNAs.
Science. 2011 Feb 4;331(6017):550-3. doi: 10.1126/science.1191138.
8
Phosphorylation of human Argonaute proteins affects small RNA binding.
Nucleic Acids Res. 2011 Mar;39(6):2330-43. doi: 10.1093/nar/gkq1032. Epub 2010 Nov 10.
9
miRNAs get an early start on translational silencing.
Cell. 2007 Oct 5;131(1):25-8. doi: 10.1016/j.cell.2007.09.021.

引用本文的文献

1
Co-option of the piRNA pathway to regulate neural crest specification.
Sci Adv. 2022 Aug 12;8(32):eabn1441. doi: 10.1126/sciadv.abn1441. Epub 2022 Aug 10.
2
Chilling Stress Triggers VvAgo1-Mediated miRNA-Like RNA Biogenesis in .
Front Microbiol. 2020 Sep 15;11:523593. doi: 10.3389/fmicb.2020.523593. eCollection 2020.
4
MicroRNAs recruit eIF4E2 to repress translation of target mRNAs.
Protein Cell. 2017 Oct;8(10):750-761. doi: 10.1007/s13238-017-0444-0. Epub 2017 Jul 28.
6
The capacity of target silencing by Drosophila PIWI and piRNAs.
RNA. 2014 Dec;20(12):1977-86. doi: 10.1261/rna.046300.114. Epub 2014 Oct 21.
7
In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.
ACS Nano. 2013 Nov 26;7(11):9675-83. doi: 10.1021/nn404079v. Epub 2013 Nov 4.
8
Argonaute protein as a linker to command center of physiological processes.
Chin J Cancer Res. 2013 Aug;25(4):430-41. doi: 10.3978/j.issn.1000-9604.2013.08.13.
9
miRISC recruits decapping factors to miRNA targets to enhance their degradation.
Nucleic Acids Res. 2013 Oct;41(18):8692-705. doi: 10.1093/nar/gkt619. Epub 2013 Jul 17.
10
Molecular dissection of human Argonaute proteins by DNA shuffling.
Nat Struct Mol Biol. 2013 Jul;20(7):818-26. doi: 10.1038/nsmb.2607. Epub 2013 Jun 9.

本文引用的文献

1
Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes.
Nature. 2009 Oct 8;461(7265):754-61. doi: 10.1038/nature08434.
2
Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression.
Mol Cell. 2009 Sep 24;35(6):881-8. doi: 10.1016/j.molcel.2009.09.009.
3
Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway.
RNA. 2009 Jul;15(7):1282-91. doi: 10.1261/rna.1541209. Epub 2009 May 18.
4
A C-terminal silencing domain in GW182 is essential for miRNA function.
RNA. 2009 Jun;15(6):1067-77. doi: 10.1261/rna.1605509. Epub 2009 Apr 21.
5
Filter-binding assays.
Methods Mol Biol. 2009;543:1-14. doi: 10.1007/978-1-60327-015-1_1.
6
Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila.
RNA. 2009 May;15(5):794-803. doi: 10.1261/rna.1364909. Epub 2009 Mar 20.
7
An expanded seed sequence definition accounts for full regulation of the hid 3' UTR by bantam miRNA.
RNA. 2009 May;15(5):814-22. doi: 10.1261/rna.1565109. Epub 2009 Mar 12.
8
Origins and Mechanisms of miRNAs and siRNAs.
Cell. 2009 Feb 20;136(4):642-55. doi: 10.1016/j.cell.2009.01.035.
9
The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif.
Biol Direct. 2009 Jan 21;4:2. doi: 10.1186/1745-6150-4-2.
10
Small silencing RNAs: an expanding universe.
Nat Rev Genet. 2009 Feb;10(2):94-108. doi: 10.1038/nrg2504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验