Smith P J
Center for Biostatistics and Epidemiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033.
Stat Med. 1991 Jan;10(1):113-8. doi: 10.1002/sim.4780100115.
Many studies aimed at estimating prevalence use several administrative lists from different sources in an attempt to enumerate all persons affected with the health condition of interest. Each list is 'incomplete' in the sense that none of them enumerates all persons affected with the health condition. Further, because the lists are drawn from different administrative sources the probability of enumeration varies from list to list. The goal is to use information from the lists to estimate the total number of affected persons in the population, but with some accounting for the different but unknown probabilities of enumeration on each list. This paper presents a Bayesian method to estimate prevalence when the probability of enumeration varies from list to list. Data from a survey of children with spina bifida illustrate the methodology.
许多旨在估计患病率的研究使用了来自不同来源的多个行政列表,试图列举出所有受所关注健康状况影响的人。从没有一个列表能列举出所有受该健康状况影响的人的意义上来说,每个列表都是“不完整的”。此外,由于这些列表来自不同的行政来源,每个列表的列举概率各不相同。目标是利用这些列表中的信息来估计总体中受影响人群的总数,但要考虑到每个列表不同且未知的列举概率。本文提出了一种在每个列表的列举概率不同时估计患病率的贝叶斯方法。一项针对脊柱裂患儿的调查数据说明了该方法。