Suppr超能文献

关于观看情感图片时诱发的情绪生物信号分类:一种基于数据挖掘的综合方法在医疗保健应用中的应用。

On the classification of emotional biosignals evoked while viewing affective pictures: an integrated data-mining-based approach for healthcare applications.

作者信息

Frantzidis Christos A, Bratsas Charalampos, Klados Manousos A, Konstantinidis Evdokimos, Lithari Chrysa D, Vivas Ana B, Papadelis Christos L, Kaldoudi Eleni, Pappas Costas, Bamidis Panagiotis D

机构信息

Laboratory of Medical Informatics, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.

出版信息

IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):309-18. doi: 10.1109/TITB.2009.2038481. Epub 2010 Jan 8.

Abstract

Recent neuroscience findings demonstrate the fundamental role of emotion in the maintenance of physical and mental health. In the present study, a novel architecture is proposed for the robust discrimination of emotional physiological signals evoked upon viewing pictures selected from the International Affective Picture System (IAPS). Biosignals are multichannel recordings from both the central and the autonomic nervous systems. Following the bidirectional emotion theory model, IAPS pictures are rated along two dimensions, namely, their valence and arousal. Following this model, biosignals in this paper are initially differentiated according to their valence dimension by means of a data mining approach, which is the C4.5 decision tree algorithm. Then, the valence and the gender information serve as an input to a Mahalanobis distance classifier, which dissects the data into high and low arousing. Results are described in Extensible Markup Language (XML) format, thereby accounting for platform independency, easy interconnectivity, and information exchange. The average recognition (success) rate was 77.68% for the discrimination of four emotional states, differing both in their arousal and valence dimension. It is, therefore, envisaged that the proposed approach holds promise for the efficient discrimination of negative and positive emotions, and it is hereby discussed how future developments may be steered to serve for affective healthcare applications, such as the monitoring of the elderly or chronically ill people.

摘要

近期神经科学研究结果表明情绪在维持身心健康方面的重要作用。在本研究中,我们提出了一种新颖的架构,用于对观看从国际情感图片系统(IAPS)中选取的图片时诱发的情绪生理信号进行稳健识别。生物信号是来自中枢神经系统和自主神经系统的多通道记录。根据双向情感理论模型,IAPS图片沿着两个维度进行评级,即效价和唤醒度。基于此模型,本文中的生物信号首先通过数据挖掘方法(即C4.5决策树算法)根据其效价维度进行区分。然后,效价和性别信息作为输入提供给马氏距离分类器,该分类器将数据分为高唤醒和低唤醒两类。结果以可扩展标记语言(XML)格式呈现,从而保证了平台独立性、易于互连性和信息交换。对于四种在唤醒度和效价维度上均不同的情绪状态的识别,平均识别(成功)率为77.68%。因此,可以设想所提出的方法在有效区分负面和正面情绪方面具有潜力,并且在此讨论了如何引导未来的发展以服务于情感健康护理应用,例如对老年人或慢性病患者的监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验