Suppr超能文献

利用大肠杆菌基因敲除文库确定抗生素敏感性谱:生成抗生素条码。

Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code.

机构信息

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.

出版信息

Antimicrob Agents Chemother. 2010 Apr;54(4):1393-403. doi: 10.1128/AAC.00906-09. Epub 2010 Jan 11.

Abstract

We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics.

摘要

我们通过扩展之前的工作,测试了近 4000 个大肠杆菌单基因敲除体对 14 种不同抗生素(环丙沙星、利福平[利福喷汀]、万古霉素、氨苄西林、磺胺甲恶唑、庆大霉素、甲硝唑、链霉素、夫西地酸、四环素、氯霉素、呋喃妥因、红霉素和三氯生)中的 1 种抗生素的敏感性,为 22 种抗生素定义了一个敏感性特征。我们筛选了每种抗生素的一个或多个亚抑菌浓度,生成了超过 80000 个数据点,并将整个集合减少到一组 283 株对至少一种抗生素显示出显著增加敏感性的菌株。我们使用这个减少的菌株集来确定另外八种抗生素(壮观霉素、头孢拉定、氨曲南、黏菌素、新霉素、依诺沙星、妥布霉素和头孢西丁)的特征。这 22 种抗生素的特征代表了一个不断增长的敏感性指纹目录,可以分为两个组成部分,即多药耐药突变体和那些赋予抗生素或测试的抗生素类型相对特异性敏感性的突变体。后者可以用 20 到 60 株菌株组成一组,用于通过生成特定敏感性的虚拟条形码读数快速对抗生素进行分型。总的来说,这些数据揭示了内在抗性的复杂性,并为设计协同药物(或药物组合)提供了额外的目标,以增强现有抗生素的作用。

相似文献

1
Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code.
Antimicrob Agents Chemother. 2010 Apr;54(4):1393-403. doi: 10.1128/AAC.00906-09. Epub 2010 Jan 11.
2
Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli.
J Bacteriol. 2008 Sep;190(17):5981-8. doi: 10.1128/JB.01982-07. Epub 2008 Jul 11.
3
Phenotypic and genotypic characterization of antimicrobial resistance in Escherichia coli O111 isolates.
J Antimicrob Chemother. 2006 Jun;57(6):1210-4. doi: 10.1093/jac/dkl127. Epub 2006 Apr 7.
4
The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics.
Int J Med Microbiol. 2013 Dec;303(8):558-62. doi: 10.1016/j.ijmm.2013.07.006. Epub 2013 Jul 31.
5
Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli.
Antimicrob Agents Chemother. 2009 Aug;53(8):3411-5. doi: 10.1128/AAC.00358-09. Epub 2009 Jun 1.
7
Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.
J Food Sci. 2017 Mar;82(3):724-730. doi: 10.1111/1750-3841.13645. Epub 2017 Feb 9.
8
9
Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago.
Anaerobe. 2013 Dec;24:25-31. doi: 10.1016/j.anaerobe.2013.09.004. Epub 2013 Sep 15.
10
Role of LsrR in the regulation of antibiotic sensitivity in avian pathogenic Escherichia coli.
Poult Sci. 2020 Jul;99(7):3675-3687. doi: 10.1016/j.psj.2020.03.064. Epub 2020 Apr 24.

引用本文的文献

3
Combined Forces Against Bacteria: Phages and Antibiotics.
Health Sci Rep. 2025 Jul 9;8(7):e70956. doi: 10.1002/hsr2.70956. eCollection 2025 Jul.
4
Evaluating the predictive power of combined gene expression dynamics from single cells on antibiotic survival.
mSystems. 2025 Jun 17;10(6):e0158824. doi: 10.1128/msystems.01588-24. Epub 2025 May 20.
5
Recent Advances in Antimicrobial Resistance: Insights from as a Model Organism.
Microorganisms. 2024 Dec 31;13(1):51. doi: 10.3390/microorganisms13010051.
6
Targeting Protein Disorder for the Remediation of Antimicrobial Resistance.
ACS Omega. 2024 Dec 10;9(51):50589-50598. doi: 10.1021/acsomega.4c08427. eCollection 2024 Dec 24.
8
The Crystal Structure of the Domain of Unknown Function 1480 (DUF1480) From Klebsiella pneumoniae.
Proteins. 2025 Mar;93(3):569-574. doi: 10.1002/prot.26752. Epub 2024 Sep 26.
9
IMT-P8 potentiates Gram-positive specific antibiotics in intrinsically resistant Gram-negative bacteria.
Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0075324. doi: 10.1128/aac.00753-24. Epub 2024 Sep 5.
10

本文引用的文献

1
Update on the Keio collection of Escherichia coli single-gene deletion mutants.
Mol Syst Biol. 2009;5:335. doi: 10.1038/msb.2009.92. Epub 2009 Dec 22.
2
Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics.
Science. 2009 Sep 11;325(5946):1380-4. doi: 10.1126/science.1175439.
3
Antibiotics for emerging pathogens.
Science. 2009 Aug 28;325(5944):1089-93. doi: 10.1126/science.1176667.
4
Targeting a bacterial stress response to enhance antibiotic action.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14570-5. doi: 10.1073/pnas.0903619106. Epub 2009 Aug 12.
5
Role of reactive oxygen species in antibiotic action and resistance.
Curr Opin Microbiol. 2009 Oct;12(5):482-9. doi: 10.1016/j.mib.2009.06.018. Epub 2009 Jul 31.
6
Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins.
Appl Environ Microbiol. 2009 Sep;75(17):5451-60. doi: 10.1128/AEM.00730-09. Epub 2009 Jun 26.
7
Nucleotide excision repair is a predominant mechanism for processing nitrofurazone-induced DNA damage in Escherichia coli.
J Bacteriol. 2009 Aug;191(15):4959-65. doi: 10.1128/JB.00495-09. Epub 2009 May 22.
8
Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34. doi: 10.1073/pnas.0800442106. Epub 2009 Mar 2.
9
Safety of imipenem/cilastatin in neurocritical care patients.
Neurocrit Care. 2009;10(3):403-7. doi: 10.1007/s12028-008-9170-z. Epub 2008 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验