Suppr超能文献

利用大肠杆菌基因敲除文库确定抗生素敏感性谱:生成抗生素条码。

Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code.

机构信息

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.

出版信息

Antimicrob Agents Chemother. 2010 Apr;54(4):1393-403. doi: 10.1128/AAC.00906-09. Epub 2010 Jan 11.

Abstract

We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics.

摘要

我们通过扩展之前的工作,测试了近 4000 个大肠杆菌单基因敲除体对 14 种不同抗生素(环丙沙星、利福平[利福喷汀]、万古霉素、氨苄西林、磺胺甲恶唑、庆大霉素、甲硝唑、链霉素、夫西地酸、四环素、氯霉素、呋喃妥因、红霉素和三氯生)中的 1 种抗生素的敏感性,为 22 种抗生素定义了一个敏感性特征。我们筛选了每种抗生素的一个或多个亚抑菌浓度,生成了超过 80000 个数据点,并将整个集合减少到一组 283 株对至少一种抗生素显示出显著增加敏感性的菌株。我们使用这个减少的菌株集来确定另外八种抗生素(壮观霉素、头孢拉定、氨曲南、黏菌素、新霉素、依诺沙星、妥布霉素和头孢西丁)的特征。这 22 种抗生素的特征代表了一个不断增长的敏感性指纹目录,可以分为两个组成部分,即多药耐药突变体和那些赋予抗生素或测试的抗生素类型相对特异性敏感性的突变体。后者可以用 20 到 60 株菌株组成一组,用于通过生成特定敏感性的虚拟条形码读数快速对抗生素进行分型。总的来说,这些数据揭示了内在抗性的复杂性,并为设计协同药物(或药物组合)提供了额外的目标,以增强现有抗生素的作用。

相似文献

引用本文的文献

3
Combined Forces Against Bacteria: Phages and Antibiotics.对抗细菌的联合力量:噬菌体与抗生素
Health Sci Rep. 2025 Jul 9;8(7):e70956. doi: 10.1002/hsr2.70956. eCollection 2025 Jul.
6
Targeting Protein Disorder for the Remediation of Antimicrobial Resistance.靶向蛋白质紊乱以修复抗菌药物耐药性
ACS Omega. 2024 Dec 10;9(51):50589-50598. doi: 10.1021/acsomega.4c08427. eCollection 2024 Dec 24.

本文引用的文献

3
Antibiotics for emerging pathogens.针对新出现病原体的抗生素。
Science. 2009 Aug 28;325(5944):1089-93. doi: 10.1126/science.1176667.
4
Targeting a bacterial stress response to enhance antibiotic action.靶向细菌应激反应以增强抗生素作用。
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14570-5. doi: 10.1073/pnas.0903619106. Epub 2009 Aug 12.
5
Role of reactive oxygen species in antibiotic action and resistance.活性氧在抗生素作用及耐药性中的作用
Curr Opin Microbiol. 2009 Oct;12(5):482-9. doi: 10.1016/j.mib.2009.06.018. Epub 2009 Jul 31.
8
Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy.工程噬菌体靶向基因网络作为抗生素治疗的佐剂
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34. doi: 10.1073/pnas.0800442106. Epub 2009 Mar 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验