Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science & Technology (NIIST), C.S.I.R, Thiruvananthapuram-695 019, India.
Dalton Trans. 2010 Jan 21;39(3):776-86. doi: 10.1039/b917256d. Epub 2009 Nov 16.
Three new 4-benzyloxy benzoic acid derivatives [4-benzyloxy benzoic acid = HL1; 3-methoxy-4-benzyloxy benzoic acid = HL2; 3-nitro-4-benzyloxy benzoic acid = HL3] have been employed as ligands for the support of six lanthanide coordination compounds [Tb(3+) = 1-3; Eu(3+) = 4-6] with the aim of testing the influence of electron releasing (-OMe) or electron withdrawing (-NO(2)) substituents on the photophysical properties. The new complexes have been characterized by a variety of spectroscopic techniques and two of the Tb(3+) complexes [1 and 2] have been structurally authenticated by single-crystal X-ray diffraction. Compounds 1 and 2 crystallize in the monoclinic space group P21/n. The molecular structure of 1 consists of homodinuclear species that are bridged by two oxygen atoms from two benzoate ligands [corrected].In the case of 1, the carboxylate ligands coordinate to the central Tb(3+) ion in bidentate chelating and bidentate bridging modes. By contrast, the X-ray structure of 2 reveals that each Tb3+ ion is connected to two neighboring ions by four methoxy substituted benzoates via the carboxylate groups in bridging mode to form an infinite one-dimensional coordination polymer [corrected]. Examination of the packing diagrams for 1 and 2 revealed the presence of a one-dimensional molecular array that is held together by intermolecular hydrogen-bonding interactions. The incorporation of an electron-releasing substituent on position 3 of 4-benzyloxy benzoic acid increases the electron density of the ligand and consequently improves the photoluminescence of the Tb(3+) complexes. On the other hand, the presence of an electron-withdrawing group at this position dramatically decreases the overall sensitization efficiency of the Tb(3+)-centered luminescence due to dissipation of the excitation energy by means of a pi*-n transition of the NO(2) substituent along with the participation of the ILCT bands. The weaker photoluminescence of the Eu(3+) complexes is attributable to the poor match of the triplet energy levels of the 4-benzyloxy benzoic acid derivatives with that of the emitting level of the central metal ion.
已经使用三种新的 4-苄氧基苯甲酸衍生物[4-苄氧基苯甲酸=HL1;3-甲氧基-4-苄氧基苯甲酸=HL2;3-硝基-4-苄氧基苯甲酸=HL3]作为配体,以支持六种镧系元素配合物[Tb(3+)= 1-3;Eu(3+)= 4-6],目的是测试电子供体(-OMe)或电子受体(-NO(2))取代基对光物理性质的影响。新的配合物已经通过各种光谱技术进行了表征,并且两种 Tb(3+)配合物[1 和 2]已经通过单晶 X 射线衍射结构确证。化合物 1 和 2结晶在单斜空间群 P21/n 中。1 的分子结构由两个氧原子桥接的同双核物种组成,该氧原子来自两个苯甲酸配体[已修正]。在 1 的情况下,羧酸盐配体以双齿螯合和双齿桥联模式与中心 Tb(3+)离子配位。相比之下,2 的 X 射线结构表明,每个 Tb3+离子通过桥联模式通过四个甲氧基取代的苯甲酸酯与两个相邻的离子连接,形成无限的一维配位聚合物[已修正]。对 1 和 2 的堆积图的检查表明,存在一维分子排列,该排列通过分子间氢键相互作用保持在一起。在 4-苄氧基苯甲酸的 3 位上引入供电子取代基会增加配体的电子密度,从而提高 Tb(3+)配合物的光致发光。另一方面,在该位置上存在吸电子基团会由于 NO(2)取代基的 pi*-n 跃迁以及 ILCT 带的参与而耗散激发能量,从而极大地降低了以 Tb(3+)为中心的发光的整体敏化效率。Eu(3+)配合物较弱的光致发光归因于 4-苄氧基苯甲酸衍生物的三重能级与中心金属离子的发射能级之间的不匹配。