Empa, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, Switzerland.
Phys Chem Chem Phys. 2010 Jan 28;12(4):992-9. doi: 10.1039/b919102j. Epub 2009 Dec 2.
The development of a detailed theoretical understanding of surface-supported supramolecular networks is important for designing novel organic nanodevices. By comparing with STM experiments, we show that van der Waals corrections to density functional theory (DFT) in the generalized gradient approximation (GGA) are mandatory to correctly reproduce the electronic and geometric structure of a prototypical system of this kind, the self-assembled hydrogen bonded network formed by 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and 4,4''-diamino-p-terphenyl (DATP) deposited on Au(111). Our results reproduce both the network structure and its higher stability with respect to homomolecular networks. By successful comparison with the experiments, we demonstrate that dispersive interactions must be taken into account when rationally designing organic semiconductor nanostructures on a metallic substrate. DFT-GGA alone would fail in predicting geometric and electronic properties for weakly bounded large organic adsorbates on coinage metal surfaces.
发展对表面支撑超分子网络的详细理论理解对于设计新型有机纳米器件非常重要。通过与 STM 实验进行比较,我们表明,对于密度泛函理论(DFT)在广义梯度近似(GGA)中的范德华修正对于正确再现这种原型系统的电子和几何结构是强制性的,该原型系统是由 3,4,9,10-苝四羧酸二酐(PTCDA)和 4,4''-二氨基对三联苯(DATP)自组装形成的氢键网络沉积在 Au(111)上。我们的结果再现了网络结构及其相对于同分子网络的更高稳定性。通过与实验的成功比较,我们证明在金属基底上合理设计有机半导体纳米结构时必须考虑分散相互作用。对于在硬币金属表面上弱束缚的大型有机吸附剂,DFT-GGA 单独使用将无法预测其几何和电子性质。