Suppr超能文献

基于带工程化半胱氨酸的抗体的荷质比分析:从多个峰到单个主峰。

Charge-based analysis of antibodies with engineered cysteines: from multiple peaks to a single main peak.

机构信息

Protein Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, USA.

出版信息

MAbs. 2009 Nov-Dec;1(6):563-71. doi: 10.4161/mabs.1.6.10058. Epub 2009 Nov 12.

Abstract

THIOMABs are antibodies with an engineered unpaired cysteine residue on each heavy chain that can be used as intermediates to generate antibody-drug conjugates. Multiple charge variant peaks were observed during cation-exchange chromatography (CEX) and imaged capillary isoelectric focusing (cIEF) analysis of several different THIOMABs. This charge heterogeneity was due to cysteinylation and/or glutathionylation at the engineered and unpaired cysteines through disulfide bonds formed during the cell culture process. Cysteine treatment followed by analysis using CEX, LC/MS and electrophoresis demonstrates that cysteine is a mild reductant that can remove glutathione and cysteine bound to the engineered cysteines without disrupting the inter- or intra-chain disulfide bonds of antibodies. We further demonstrated that using a cysteine/cystine redox pair (rather than cysteine alone) can not only effectively remove glutathione at the engineered cysteines, but also generate homogeneously cysteinylated species, which resulted in one main peak in both CEX-HPLC and imaged cIEF assays for antibodies with engineered and unpaired cysteines.

摘要

THIOMAB 是一种抗体,每个重链上都有一个工程化的未配对半胱氨酸残基,可作为中间体用于生成抗体药物偶联物。在几种不同的 THIOMAB 的阳离子交换色谱 (CEX) 和成像毛细管等电聚焦 (cIEF) 分析中观察到多个电荷变异峰。这种电荷异质性是由于在细胞培养过程中形成的二硫键,导致工程化和未配对半胱氨酸上的半胱氨酸化和/或谷胱甘肽化。用半胱氨酸处理,然后用 CEX、LC/MS 和电泳分析表明,半胱氨酸是一种温和的还原剂,可去除与工程化半胱氨酸结合的谷胱甘肽和半胱氨酸,而不会破坏抗体的链间或链内二硫键。我们进一步证明,使用半胱氨酸/胱氨酸氧化还原对(而不是单独的半胱氨酸)不仅可以有效地去除工程化半胱氨酸上的谷胱甘肽,还可以生成均匀的半胱氨酸化物质,这导致具有工程化和未配对半胱氨酸的抗体在 CEX-HPLC 和成像 cIEF 测定中均只有一个主峰。

相似文献

1
Charge-based analysis of antibodies with engineered cysteines: from multiple peaks to a single main peak.
MAbs. 2009 Nov-Dec;1(6):563-71. doi: 10.4161/mabs.1.6.10058. Epub 2009 Nov 12.
2
Identification and characterization of buried unpaired cysteines in a recombinant monoclonal IgG1 antibody.
Anal Chem. 2012 Aug 21;84(16):7112-23. doi: 10.1021/ac301426h. Epub 2012 Aug 1.
3
Extended characterization of unpaired cysteines in an IgG1 monoclonal antibody by LC-MS analysis.
Anal Biochem. 2021 Jun 1;622:114172. doi: 10.1016/j.ab.2021.114172. Epub 2021 Mar 22.
4
Triple light chain antibodies: factors that influence its formation in cell culture.
Biotechnol Bioeng. 2010 Mar 1;105(4):748-60. doi: 10.1002/bit.22580.
7
Characterization of recombinant monoclonal antibody charge variants using WCX chromatography, icIEF and LC-MS/MS.
Anal Biochem. 2019 Jan 1;564-565:1-12. doi: 10.1016/j.ab.2018.10.002. Epub 2018 Oct 3.
9
Characterization of Cysteinylation and Trisulfide Bonds in a Recombinant Monoclonal Antibody.
Anal Chem. 2016 May 17;88(10):5430-7. doi: 10.1021/acs.analchem.6b00822. Epub 2016 May 4.
10
Charge heterogeneity of a therapeutic monoclonal antibody conjugated with a cytotoxic antitumor antibiotic, calicheamicin.
J Chromatogr A. 2010 Nov 5;1217(45):7164-71. doi: 10.1016/j.chroma.2010.09.022. Epub 2010 Sep 17.

引用本文的文献

5
Protein-based vehicles for biomimetic RNAi delivery.
J Biol Eng. 2019 Feb 26;13:19. doi: 10.1186/s13036-018-0130-7. eCollection 2019.
6
Characterization and analysis of scFv-IgG bispecific antibody size variants.
MAbs. 2018 Nov-Dec;10(8):1236-1247. doi: 10.1080/19420862.2018.1505398. Epub 2018 Sep 20.
7
Identification of high affinity HER2 binding antibodies using CHO Fab surface display.
Protein Eng Des Sel. 2018 Mar 1;31(3):91-101. doi: 10.1093/protein/gzy004.
8
Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation.
PLoS One. 2016 Jan 14;11(1):e0146907. doi: 10.1371/journal.pone.0146907. eCollection 2016.
9
Antibody-drug conjugates as novel anti-cancer chemotherapeutics.
Biosci Rep. 2015 Jun 12;35(4):e00225. doi: 10.1042/BSR20150089.
10
Linked-in: design and efficacy of antibody drug conjugates in oncology.
Oncotarget. 2013 Mar;4(3):397-412. doi: 10.18632/oncotarget.924.

本文引用的文献

1
Potent antibody drug conjugates for cancer therapy.
Curr Opin Chem Biol. 2009 Jun;13(3):235-44. doi: 10.1016/j.cbpa.2009.03.023. Epub 2009 May 4.
2
Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index.
Nat Biotechnol. 2008 Aug;26(8):925-32. doi: 10.1038/nbt.1480. Epub 2008 Jul 20.
3
Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs.
J Immunol Methods. 2008 Mar 20;332(1-2):41-52. doi: 10.1016/j.jim.2007.12.011. Epub 2008 Jan 14.
6
Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma.
Blood. 2007 Jul 15;110(2):616-23. doi: 10.1182/blood-2007-01-066704. Epub 2007 Mar 20.
9
Monoclonal antibody successes in the clinic.
Nat Biotechnol. 2005 Sep;23(9):1073-8. doi: 10.1038/nbt0905-1073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验