Suppr超能文献

通用数量遗传方法在比较生物学中的应用:系统发育学、分类学以及连续和分类性状的多性状模型。

General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

机构信息

School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.

出版信息

J Evol Biol. 2010 Mar;23(3):494-508. doi: 10.1111/j.1420-9101.2009.01915.x. Epub 2010 Jan 7.

Abstract

Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

摘要

虽然比较生物学中使用的许多统计技术最初是在数量遗传学中发展起来的,但比较技术的后续发展相对孤立。因此,许多比较分析的新的和计划中的发展已经在数量遗传学中有了经过充分测试的解决方案。在本文中,我们以最近发表的三篇发展系统发育元分析的论文为例,无论是否隐含,都将它们视为数量遗传模型。我们强调了所提出的解决方案中的一些困难,并证明了标准的数量遗传理论和软件提供了解决方案。我们还展示了如何使用贝叶斯数量遗传学的结果为系统发育混合模型创建有效的马尔可夫链蒙特卡罗算法,从而将其普遍性扩展到非高斯数据。特别有用的是开发用于分析离散特征进化的多项式模型,以及开发可以遵循不同分布的多特征模型。元分析通常包括一个非随机的物种集合,对于这个集合,完整的系统发育树只有部分解决。我们使用缺失数据理论,展示了所提出的模型如何用于纠正非随机抽样,并展示了分类法和系统发育如何结合起来,形成一个灵活的框架,用于对依赖性进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验