Suppr超能文献

下丘脑-延髓 POMC 投射在瘦素诱导的食物摄入抑制中的潜在作用。

A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake.

机构信息

Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R720-8. doi: 10.1152/ajpregu.00619.2009. Epub 2010 Jan 13.

Abstract

Melanocortin-3/4 receptor ligands administered to the caudal brain stem potently modulate food intake by changing meal size. The origin of the endogenous ligands is unclear, because the arcuate nucleus of the hypothalamus and the nucleus of the solitary tract (NTS) harbor populations of proopiomelanocortin (POMC)-expressing neurons. Here we demonstrate that activation of hypothalamic POMC neurons leads to suppression of food intake and that this suppression is prevented by administration of a melanocortin-3/4 receptor antagonist to the NTS and its vicinity. Bilateral leptin injections into the rat arcuate nucleus produced long-lasting suppression of meal size and total chow intake. These effects were significantly blunted by injection of SHU-9119 into the fourth ventricle, although SHU-9119 increased meal size and food intake during the first, but not the second, 14-h observation period. Leptin effects on meal size and food intake were abolished throughout the 40-h observation period by injection of SHU-9119 into the NTS at a dose that by itself had no effect. Neuron-specific tracing from the arcuate nucleus with a Cre-inducible tract-tracing adenovirus in POMC-Cre mice showed the presence of labeled axons in the NTS. Furthermore, density of alpha-melanocyte-stimulating hormone-immunoreactive axon profiles throughout the NTS was decreased by approximately 70% after complete surgical transection of connections with the forebrain in the chronic decerebrate rat model. The results further support the existence of POMC projections from the hypothalamus to the NTS and suggest that these projections have a functional role in the control of food intake.

摘要

黑皮质素 3/4 受体配体作用于脑干尾部能通过改变进食量来强力调节食物摄取。内源性配体的来源尚不清楚,因为下丘脑弓状核和孤束核(NTS)拥有表达前阿黑皮素原(POMC)的神经元群体。这里我们证明,激活下丘脑 POMC 神经元会导致食物摄取减少,而这种抑制作用可通过向 NTS 及其附近区域给予黑皮质素 3/4 受体拮抗剂来预防。双侧瘦素注射到大鼠弓状核会产生长时间的餐食量和总饲料摄入量的抑制。这些效应在第四脑室注射 SHU-9119 后显著减弱,尽管 SHU-9119 在第一,但不是第二,14 小时观察期内增加了进食量和食物摄取。通过将 SHU-9119 注射到 NTS 中,即使该剂量本身没有效果,也会在整个 40 小时观察期内消除瘦素对餐食量和食物摄取的影响。用 POMC-Cre 小鼠的 Cre 诱导性轨迹追踪腺病毒对弓状核进行神经元特异性追踪显示,在 NTS 中存在标记的轴突。此外,在慢性去大脑大鼠模型中,与前脑的连接完全手术横断后,NTS 中α-黑色素细胞刺激素免疫反应性轴突轮廓的密度降低了约 70%。结果进一步支持了下丘脑到 NTS 的 POMC 投射的存在,并表明这些投射在食物摄取控制中具有功能作用。

相似文献

1
A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake.
Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R720-8. doi: 10.1152/ajpregu.00619.2009. Epub 2010 Jan 13.
2
Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections.
Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R247-58. doi: 10.1152/ajpregu.00869.2004. Epub 2005 Mar 3.
3
Activation of the ARC→MeA Projection Reduces Food Intake.
Front Neural Circuits. 2020 Nov 5;14:595783. doi: 10.3389/fncir.2020.595783. eCollection 2020.
5
Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract.
Am J Physiol Endocrinol Metab. 2007 May;292(5):E1348-57. doi: 10.1152/ajpendo.00466.2006. Epub 2007 Jan 16.
6
Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight.
J Neurosci. 1998 Dec 1;18(23):10128-35. doi: 10.1523/JNEUROSCI.18-23-10128.1998.
7
Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures.
Brain Res. 2016 Sep 1;1646:366-376. doi: 10.1016/j.brainres.2016.06.024. Epub 2016 Jun 16.
8
Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency.
Am J Physiol Endocrinol Metab. 2012 Sep 1;303(5):E644-51. doi: 10.1152/ajpendo.00009.2012. Epub 2012 Jul 3.
10
Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents.
J Neurosci. 2020 Sep 9;40(37):7054-7064. doi: 10.1523/JNEUROSCI.1865-19.2020. Epub 2020 Aug 19.

引用本文的文献

1
AgRP neurons mediate activity-dependent development of oxytocin connectivity and autonomic regulation.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2403810121. doi: 10.1073/pnas.2403810121. Epub 2024 Nov 25.
2
NMDA Receptors in POMC Neurons Connect Exercise With Insulin Sensitivity.
Diabetes. 2024 Dec 1;73(12):1942-1951. doi: 10.2337/dbi24-0002.
3
Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of obesity.
J Nutr Biochem. 2022 Mar;101:108928. doi: 10.1016/j.jnutbio.2021.108928. Epub 2021 Dec 20.
4
The physiological control of eating: signals, neurons, and networks.
Physiol Rev. 2022 Apr 1;102(2):689-813. doi: 10.1152/physrev.00028.2020. Epub 2021 Sep 6.
5
Effects of metabolic state on the regulation of melanocortin circuits.
Physiol Behav. 2020 Oct 1;224:113039. doi: 10.1016/j.physbeh.2020.113039. Epub 2020 Jun 28.
6
Neural populations for maintaining body fluid balance.
Curr Opin Neurobiol. 2019 Aug;57:134-140. doi: 10.1016/j.conb.2019.01.014. Epub 2019 Mar 2.
7
Autonomic Regulation of Glucose Homeostasis: a Specific Role for Sympathetic Nervous System Activation.
Curr Diab Rep. 2018 Sep 19;18(11):107. doi: 10.1007/s11892-018-1069-2.
9
Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.
Mol Metab. 2017 Nov;6(11):1350-1359. doi: 10.1016/j.molmet.2017.08.009. Epub 2017 Sep 1.
10
Parabrachial CGRP Neurons Control Meal Termination.
Cell Metab. 2016 May 10;23(5):811-20. doi: 10.1016/j.cmet.2016.04.006.

本文引用的文献

1
Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin.
Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1238-46. doi: 10.1152/ajpregu.00182.2009. Epub 2009 Sep 2.
3
Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway.
Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R845-54. doi: 10.1152/ajpregu.90531.2008. Epub 2009 Jan 28.
4
Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8.
Am J Physiol Regul Integr Comp Physiol. 2009 Mar;296(3):R476-84. doi: 10.1152/ajpregu.90544.2008. Epub 2008 Dec 24.
6
The brain, appetite, and obesity.
Annu Rev Psychol. 2008;59:55-92. doi: 10.1146/annurev.psych.59.103006.093551.
7
Distributed neural control of energy balance: contributions from hindbrain and hypothalamus.
Obesity (Silver Spring). 2006 Aug;14 Suppl 5:216S-221S. doi: 10.1038/oby.2006.312.
8
Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size.
Physiol Behav. 2006 Nov 30;89(4):517-24. doi: 10.1016/j.physbeh.2006.08.018. Epub 2006 Sep 25.
9
Divergence of melanocortin pathways in the control of food intake and energy expenditure.
Cell. 2005 Nov 4;123(3):493-505. doi: 10.1016/j.cell.2005.08.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验