Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA.
J Chem Phys. 2010 Jan 7;132(1):014505. doi: 10.1063/1.3280816.
Quasichemical theory is utilized to analyze the relative roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl(-), Br(-), and I(-). Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The total hydration free energies display a stronger dependence on ion size than on polarizability. The quasichemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. The inner-shell contribution becomes slightly more favorable with increasing ion polarizability, indicating electrostriction of the nearby waters. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. This in turn allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. The van der Waals piece is small and positive, and it displays a small ion specificity. The sum of the inner-shell, packing, and long-ranged van der Waals contributions exhibits little variation along the anion series for the chosen conditioning radii, targeting electrostatic effects (influenced by ion size) as the largest determinant of specificity. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased anisotropy. The water dipole moments near the ion are similar in magnitude to bulk water, while the ion dipole moments are found to be significantly larger than those observed in quantum mechanical studies. Possible impacts of the observed over-polarization of the ions on simulated anion surface segregation are discussed.
准化学理论被用于分析溶质极化和大小在决定整盐水化自由能方面对卤族阴离子(Cl(-)、Br(-)和 I(-))水合结构和热力学的相对作用。使用极化 AMOEBA 力场,我们获得了与实验极好的吻合,该力场对整个盐的水化自由能表现出比极化更强烈的依赖于离子大小的关系。准化学方法通过硬球条件精确地将溶剂化自由能划分成内壳、外壳堆积和外壳长程贡献。随着离子极化率的增加,内壳贡献变得稍微更有利,表明附近水分子的静电收缩。即使在离子-水(氧)径向分布函数的第一个最大值内,选择较小的条件半径,也会导致长程贡献呈现高斯行为,从而主导离子水化自由能。这反过来又允许对长程贡献进行平均场处理,导致自然地划分为一级静电、诱导和范德华项。诱导项表现出最强的离子极化率依赖性,而较大幅度的一级静电项则表现出相反但较弱的极化率依赖性。范德华项较小且为正,并且表现出较小的离子特异性。在所选择的条件半径下,内壳、堆积和长程范德华贡献的总和沿阴离子系列变化很小,目标是静电效应(受离子大小影响)作为特异性的最大决定因素。此外,还进行了结构分析以检查阴离子周围的溶剂化各向异性。与水化自由能相反,溶剂化各向异性更依赖于离子极化率而不是离子大小:增加极化率会导致各向异性增加。离子附近的水分子偶极矩与体相水相似,而离子偶极矩发现明显大于量子力学研究中观察到的偶极矩。讨论了观察到的离子过度极化对模拟阴离子表面分离的可能影响。