Department of Medicinal Chemistry, Faculty of Pharmacy, 16 Azar Ave., Tehran University of Medical Sciences, Tehran, Iran.
J Mol Graph Model. 2010 Apr;28(7):626-35. doi: 10.1016/j.jmgm.2009.12.007. Epub 2009 Dec 29.
Arginase of the Helicobacter pylori hydrolyzes l-arginine to l-ornithine and urea. H. pylori urease hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Both enzymes are involved in H. pylori nitrogen metabolism. The role of arginase in the physiology of H. pylori is metabolically upstream of urease which contributes in pathogeneses of this bacterium, so arginase could be potential drug target for H. pylori infection. We performed homology modeling of H. pylori arginase using the crystal structure of Bacillus caldovelox arginase as a template, and then refined the model through molecular dynamics (MD) simulations. Different criteria measured by PROCHECK, VERIFY-3D and PROSA were indicative of the proper fold for the predicted structural model of H. pylori arginase. Further evaluation on the model quality was performed by investigating the interaction of some arginase inhibitors with the modeled enzyme. Such interactions were determined employing Autodock 3.0.5 program. Our results are compatible with the published data on contribution of four aspartic acids: D116, D120, D234, D236 and three histidines: H91, H118, H133 for catalysis and stability of binuclear metal center of arginase that have important role in binding and catalytic activity in active site. In the absence of the experimental structure of H. pylori arginase we hope that our model will be useful to provide rational design of novel anti-H. pylori drugs.
幽门螺杆菌的精氨酸酶将 l-精氨酸水解为 l-鸟氨酸和尿素。幽门螺杆菌的脲酶将尿素水解为二氧化碳和铵,从而中和酸。这两种酶都参与了幽门螺杆菌的氮代谢。精氨酸酶在幽门螺杆菌生理学中的作用是脲酶代谢途径的上游,脲酶有助于该细菌的发病机制,因此精氨酸酶可能是幽门螺杆菌感染的潜在药物靶点。我们使用巴氏芽孢杆菌精氨酸酶的晶体结构作为模板对幽门螺杆菌精氨酸酶进行了同源建模,然后通过分子动力学(MD)模拟对模型进行了优化。PROCHECK、VERIFY-3D 和 PROSA 测量的不同标准表明,预测的幽门螺杆菌精氨酸酶结构模型具有适当的折叠。通过研究一些精氨酸酶抑制剂与模型酶的相互作用,进一步评估了模型的质量。这种相互作用是通过 Autodock 3.0.5 程序确定的。我们的结果与关于四个天冬氨酸(D116、D120、D234、D236 和三个组氨酸(H91、H118、H133)对精氨酸酶双金属中心的催化和稳定性的发表数据相吻合,双金属中心在活性位点的结合和催化活性中起着重要作用。在缺乏幽门螺杆菌精氨酸酶实验结构的情况下,我们希望我们的模型将有助于为新型抗幽门螺杆菌药物的合理设计提供参考。