Foundation for Applied Molecular Evolution, 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601, USA.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1948-53. doi: 10.1073/pnas.0908463107. Epub 2010 Jan 11.
Any system, natural or human-made, is better understood if we analyze both its history and its structure. Here we combine structural analyses with a "Reconstructed Evolutionary Adaptive Path" (REAP) analysis that used the evolutionary and functional history of DNA polymerases to replace amino acids to enable polymerases to accept a new class of triphosphate substrates, those having their 3'-OH ends blocked as a 3(')-ONH(2) group (dNTP-ONH(2)). Analogous to widely used 2',3'-dideoxynucleoside triphosphates (ddNTPs), dNTP-ONH(2)s terminate primer extension. Unlike ddNTPs, however, primer extension can be resumed by cleaving an O-N bond to restore an -OH group to the 3'-end of the primer. REAP combined with crystallographic analyses identified 35 sites where replacements might improve the ability of Taq to accept dNTP-ONH(2)s. A library of 93 Taq variants, each having replacements at three or four of these sites, held eight variants having improved ability to accept dNTP-ONH(2) substrates. Two of these (A597T, L616A, F667Y, E745H, and E520G, K540I, L616A) performed notably well. The second variant incorporated both dNTP-ONH(2)sand ddNTPs faithfully and efficiently, supporting extension-cleavage-extension cycles applicable in parallel sequencing and in SNP detection through competition between reversible and irreversible terminators. Dissecting these results showed that one replacement (L616A), not previously identified, allows Taq to incorporate both reversible and irreversible terminators. Modeling showed how L616A might open space behind Phe-667, allowing it to move to accommodate the larger 3'-substituent. This work provides polymerases for DNA analyses and shows how evolutionary analyses help explore relationships between structure and function in proteins.
任何系统,无论是自然的还是人为的,如果我们同时分析其历史和结构,就会对其有更好的理解。在这里,我们将结构分析与“重建进化适应途径”(REAP)分析相结合,该分析利用 DNA 聚合酶的进化和功能历史来取代氨基酸,使聚合酶能够接受一类新的三磷酸核苷底物,即具有 3'-OH 末端被封闭为 3'(-ONH2)基团的三磷酸核苷(dNTP-ONH2)。类似于广泛使用的 2',3'-二脱氧核苷三磷酸(ddNTPs),dNTP-ONH2终止引物延伸。然而,与 ddNTPs 不同的是,通过切断 O-N 键可以恢复引物 3'末端的-OH 基团,从而重新开始引物延伸。REAP 与晶体学分析相结合,确定了 35 个可能提高 Taq 接受 dNTP-ONH2能力的替代位置。一个由 93 个 Taq 变体组成的文库,每个变体在这些位置中的三个或四个位置都有替换,其中有八个变体具有更好的接受 dNTP-ONH2底物的能力。其中两个(A597T、L616A、F667Y、E745H 和 E520G、K540I、L616A)表现尤为出色。第二个变体忠实地、高效地掺入了 both dNTP-ONH2s 和 ddNTPs,支持可平行进行的延伸-切割-延伸循环,以及通过可逆和不可逆终止子之间的竞争在 SNP 检测中应用。对这些结果进行剖析表明,一个以前未被识别的替换(L616A)允许 Taq 掺入可逆和不可逆终止子。建模表明 L616A 如何在 Phe-667 后面打开空间,允许它移动以适应更大的 3'取代基。这项工作为 DNA 分析提供了聚合酶,并展示了进化分析如何帮助探索蛋白质中结构和功能之间的关系。