Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Nat Chem Biol. 2010 Feb;6(2):109-16. doi: 10.1038/nchembio.284. Epub 2009 Dec 27.
Neurotransmitter-sodium symporters (NSS), targets for psychostimulants and therapeutic drugs, have a critical role in neurotransmission. Whereas eukaryotic NSS show chloride-dependent transport, bacterial NSS feature Cl(-)-independent substrate transport. Recently we showed that mutation of an acidic residue near one of the sodium ion-binding sites in LeuT of Aquifex aeolicus or Tyt1 of Fusobacterium nucleatum renders substrate binding and/or transport Cl(-) dependent. We reasoned that the negative charge--provided either by Cl(-) or by the transporter itself--is required for substrate translocation. Here we show that Tyt1 reconstituted in proteoliposomes is strictly dependent on the Na(+) gradient and is stimulated by an inside negative membrane potential and by an inversely oriented proton gradient. Notably, Na(+)/substrate symport elicited H(+) efflux, indicative of Na(+)/substrate symport-coupled H(+) antiport. Mutations that render the transport phenotype Cl(-) dependent essentially abolish the pH dependence. We propose unifying features of charge balance by all NSS members with similar mechanistic features but different molecular solutions.
神经递质-钠离子转运体(NSS)是精神兴奋剂和治疗药物的靶点,在神经递质传递中起着关键作用。真核 NSS 表现出氯离子依赖性转运,而细菌 NSS 则具有氯离子非依赖性底物转运。最近我们发现,在 Aquifex aeolicus 的 LeuT 或 Fusobacterium nucleatum 的 Tyt1 中,钠离子结合位点附近的酸性残基发生突变,会使底物结合和/或转运依赖氯离子。我们推断,负电荷(由氯离子或转运体本身提供)是底物移位所必需的。在这里,我们表明,在脂质体中重建的 Tyt1 严格依赖于钠离子梯度,并受内向负膜电位和反向质子梯度的刺激。值得注意的是,Na+/底物同向转运引发 H+外排,表明 Na+/底物同向转运偶联 H+反向转运。使转运表型依赖氯离子的突变基本上会消除 pH 依赖性。我们提出所有具有相似机械特征但不同分子解决方案的 NSS 成员通过电荷平衡的统一特征。