Suppr超能文献

使用近实时和定期采样数据对城市溪流中的总最大日负荷(TMDL)计算进行比较。

A comparison of total maximum daily load (TMDL) calculations in urban streams using near real-time and periodic sampling data.

作者信息

Henjum Michael B, Hozalski Raymond M, Wennen Christine R, Novak Paige J, Arnold William A

机构信息

Department of Civil Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA.

出版信息

J Environ Monit. 2010 Jan;12(1):234-41. doi: 10.1039/b912990a. Epub 2009 Nov 12.

Abstract

A network of in situ sensors and nutrient analyzers was deployed to measure nitrate, specific conductance (surrogate for chloride), and turbidity (surrogate for total suspended solids (TSS)) for 28 days in two urban streams near Minneapolis, MN. The primary objectives of the study were: (1) to determine the accuracy associated with quantifying pollutant loading using periodic discrete (i.e., grab) samples in comparison to in situ near real-time monitoring and (2) to identify pollutant sources. Within a highly impervious drainage area (>35%) the majority of pollutant load (>90% for nitrate, chloride, and TSS) was observed to be discharged in a small percentage of time (<20%). Consequently, periodic sampling is prone to underestimate pollutant loads. Additionally, when compared to loads based on near real-time sampling, average errors of 19-200% were associated with sampling 1-2 times a month. There are also limitations of periodic sampling with respect to pollutant source determination. Resulting implications with regard to total maximum daily load (TMDL) assessments are discussed.

摘要

在明尼苏达州明尼阿波利斯市附近的两条城市溪流中,部署了一个原位传感器和养分分析仪网络,用于测量硝酸盐、电导率(作为氯化物的替代指标)和浊度(作为总悬浮固体(TSS)的替代指标),为期28天。该研究的主要目标是:(1)确定与使用定期离散(即抓取)样本相比,通过原位近实时监测来量化污染物负荷的准确性,以及(2)识别污染物来源。在一个高度不透水的排水区域(>35%)内,大部分污染物负荷(硝酸盐、氯化物和TSS的>90%)在一小部分时间(<20%)内被排放。因此,定期采样容易低估污染物负荷。此外,与基于近实时采样的负荷相比,每月采样1 - 2次的平均误差为19 - 200%。在污染物源确定方面,定期采样也存在局限性。文中还讨论了对总最大日负荷(TMDL)评估的相关影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验