Suppr超能文献

生成允许的定点非天然氨基酸酰-tRNA 合成酶。

Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.

机构信息

Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA.

出版信息

Biochemistry. 2010 Mar 2;49(8):1667-77. doi: 10.1021/bi901947r.

Abstract

Genetically incorporated unnatural amino acid (UAA) technologies are powerful tools that are greatly enhancing our ability to study and engineer biological systems. Using these techniques, researchers can precisely control the position and number of novel chemical moieties in a protein, via introducing the novel R group of UAAs, that are genetically encoded in the protein's primary structure. The substrate recognition properties of a natural aminoacyl-tRNA synthetase (aaRS) must be modified in order to incorporate UAAs into proteins. Protocols to do so are technically simple but require time and optimization, which has significantly limited the accessibility of this important technology. At present, engineered unnatural aminoacyl-tRNA synthetases (UaaRS) are evaluated on their translational efficiency (the extent to which they allow for incorporation of UAAs into protein) and fidelity (the extent to which they prevent incorporation of natural amino acids). We propose that a third parameter of substrate recognition, permissivity, is equally important. Permissive UaaRSs, whose relaxed substrate recognition properties allow them to incorporate multiple unnatural amino acids (but not natural amino acids), would eliminate the need to generate new UaaRSs for many new UAAs. Here, we outline methods for quickly and easily assessing the permissivity of existing UaaRSs and for generating permissive UaaRSs. In proof of principle experiments, we determined the degree of permissivity of two UaaRSs for a family of structurally related fluorinated UAAs ((19)F-UAAs). We then increased the permissivity of the initial UaaRSs to allow for incorporation of the family of (19)F-UAAs. Finally, we validated the utility of these new (19)F-UAAs as probes for fluorine NMR studies of protein structure and dynamics. We expect that results of this work will increase the accessibility of UAA technology and the use of new UAAs in proteins.

摘要

基因整合的非天然氨基酸 (UAA) 技术是一种强大的工具,极大地增强了我们研究和工程生物系统的能力。使用这些技术,研究人员可以通过在蛋白质的一级结构中引入遗传编码的新型 UAA 的 R 基团,精确控制蛋白质中新化学部分的位置和数量。为了将 UAA 掺入蛋白质中,必须修饰天然氨酰-tRNA 合成酶 (aaRS) 的底物识别特性。虽然将 UAA 掺入蛋白质的方法在技术上很简单,但需要时间和优化,这极大地限制了这项重要技术的可及性。目前,工程化的非天然氨酰-tRNA 合成酶 (UaaRS) 是根据其翻译效率(它们在多大程度上允许 UAA 掺入蛋白质)和保真度(它们在多大程度上防止掺入天然氨基酸)进行评估的。我们提出,底物识别的第三个参数,即宽容度,同样重要。宽容的 UaaRS 具有宽松的底物识别特性,允许它们掺入多种非天然氨基酸(但不是天然氨基酸),这将消除为许多新的 UAA 生成新的 UaaRS 的需要。在这里,我们概述了快速轻松评估现有 UaaRS 的宽容度和生成宽容的 UaaRS 的方法。在原理验证实验中,我们确定了两种 UaaRS 对一组结构相关的氟化 UAA((19)F-UAA)的宽容度程度。然后,我们增加了初始 UaaRS 的宽容度,以允许该系列(19)F-UAA 的掺入。最后,我们验证了这些新的(19)F-UAA 作为氟 NMR 研究蛋白质结构和动力学探针的实用性。我们预计,这项工作的结果将提高 UAA 技术的可及性,并增加蛋白质中新型 UAA 的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验