Suppr超能文献

利用短乳杆菌将稻草转化为生物基化学品:一种综合工艺。

Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis.

机构信息

Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Appl Microbiol Biotechnol. 2010 May;86(5):1375-85. doi: 10.1007/s00253-009-2407-8. Epub 2010 Jan 19.

Abstract

Commercialization of lignocellulosic biomass as a feedstock for bio-based chemical production is problematic due to the high processing costs of pretreatment and saccharifying enzymes combined with low product yields. Such low product yield can be attributed, in large part, to the incomplete utilization of the various carbohydrate sugars found in the lignocellulosic biomass. In this study, we demonstrate that Lactobacillus brevis is able to simultaneously metabolize all fermentable carbohydrates in acid pre-processed rice straw hydrolysate, thereby allowing complete utilization of all released sugars. Inhibitors present in rice straw hydrolysate did not affect lactic acid production. Moreover, the activity of exogenously added cellulases was not reduced in the presence of growing cultures of L. brevis. These factors enabled the use of L. brevis in a process termed simultaneous saccharification and mixed sugar fermentation (SSMSF). In SSMSF with L. brevis, sugars present in rice straw hydrolysate were completely utilized while the cellulase maintained its maximum activity due to the lack of feedback inhibition from glucose and/or cellobiose. By comparison to a sequential hydrolysis and fermentation process, SSMSF reduced operation time and the amount of cellulase enzyme necessary to produce the same amount of lactic acid.

摘要

由于预处理和糖化酶的加工成本高,加上产品产量低,木质纤维素生物质作为生物基化学品生产的原料的商业化存在问题。这种低产品产量在很大程度上归因于木质纤维素生物质中各种碳水化合物糖的不完全利用。在这项研究中,我们证明了短乳杆菌能够同时代谢酸预处理稻草水解物中的所有可发酵碳水化合物,从而能够完全利用所有释放的糖。稻草水解物中的抑制剂并不影响乳酸的生产。此外,在生长的短乳杆菌存在下,外源添加的纤维素酶的活性不会降低。这些因素使得可以在称为同步糖化和混合糖发酵(SSMSF)的工艺中使用短乳杆菌。在短乳杆菌的 SSMSF 中,稻草水解物中的糖被完全利用,而由于葡萄糖和/或纤维二糖没有反馈抑制,纤维素酶保持最大活性。与顺序水解和发酵过程相比,SSMSF 减少了操作时间和生产相同量乳酸所需的纤维素酶的量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/2854344/94fed6a1fe51/253_2009_2407_Fig1_HTML.jpg

相似文献

1
Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis.
Appl Microbiol Biotechnol. 2010 May;86(5):1375-85. doi: 10.1007/s00253-009-2407-8. Epub 2010 Jan 19.
2
Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
J Biosci Bioeng. 2015 Jun;119(6):694-9. doi: 10.1016/j.jbiosc.2014.10.027. Epub 2015 Jan 3.
3
Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics.
Appl Biochem Biotechnol. 2010 May;161(1-8):124-36. doi: 10.1007/s12010-009-8857-8. Epub 2009 Nov 25.
4
One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis.
Bioresour Technol. 2018 Mar;251:268-273. doi: 10.1016/j.biortech.2017.12.056. Epub 2017 Dec 20.
8
Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.
J Microbiol Biotechnol. 2015 Jan;25(1):26-32. doi: 10.4014/jmb.1405.05025.
9
Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis.
Appl Microbiol Biotechnol. 2014 Aug;98(15):6641-50. doi: 10.1007/s00253-014-5703-x. Epub 2014 Apr 13.
10
Study of chemical pretreatment and enzymatic saccharification for producing fermentable sugars from rice straw.
Bioprocess Biosyst Eng. 2014 Jul;37(7):1337-44. doi: 10.1007/s00449-013-1106-0. Epub 2013 Dec 18.

引用本文的文献

2
Engineered biosynthesis of biodegradable polymers.
J Ind Microbiol Biotechnol. 2016 Aug;43(8):1037-58. doi: 10.1007/s10295-016-1785-z. Epub 2016 Jun 3.
3
Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054.
Appl Environ Microbiol. 2013 Nov;79(21):6747-54. doi: 10.1128/AEM.02130-13. Epub 2013 Aug 30.
4
Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass.
Appl Microbiol Biotechnol. 2010 Nov;88(5):1077-85. doi: 10.1007/s00253-010-2839-1. Epub 2010 Sep 14.

本文引用的文献

1
Relaxed control of sugar utilization in Lactobacillus brevis.
Microbiology (Reading). 2009 Apr;155(Pt 4):1351-1359. doi: 10.1099/mic.0.024653-0.
2
Improving the performance of a continuous process for the production of ethanol from starch.
Appl Biochem Biotechnol. 2009 May;156(1-3):76-90. doi: 10.1007/s12010-009-8562-7. Epub 2009 Feb 25.
4
Continuous culture studies of xylose-fermenting Zymomonas mobilis.
Appl Biochem Biotechnol. 1998 Spring;70-72:353-67. doi: 10.1007/978-1-4612-1814-2_34.
6
Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
Appl Biochem Biotechnol. 2008 Mar;148(1-3):199-209. doi: 10.1007/s12010-007-8080-4. Epub 2007 Nov 15.
7
Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis.
Science. 1995 Jan 13;267(5195):240-3. doi: 10.1126/science.267.5195.240.
8
Industrial biotechnology for the production of bio-based chemicals--a cradle-to-grave perspective.
Trends Biotechnol. 2007 Mar;25(3):119-24. doi: 10.1016/j.tibtech.2007.01.001. Epub 2007 Jan 17.
9
Engineering yeasts for xylose metabolism.
Curr Opin Biotechnol. 2006 Jun;17(3):320-6. doi: 10.1016/j.copbio.2006.05.008. Epub 2006 May 18.
10
Hemicellulose bioconversion.
J Ind Microbiol Biotechnol. 2003 May;30(5):279-91. doi: 10.1007/s10295-003-0049-x. Epub 2003 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验