Suppr超能文献

谷胱甘肽转移酶 A4-4 依赖性代谢 4-羟基壬烯醛的底物特异性与立体选择性。

Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal.

机构信息

Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA.

出版信息

Biochemistry. 2010 Feb 23;49(7):1541-8. doi: 10.1021/bi902038u.

Abstract

Conjugation to glutathione (GSH) by glutathione transferase A4-4 (GSTA4-4) is a major route of elimination for the lipid peroxidation product 4-hydroxynonenal (HNE), a toxic compound that contributes to numerous diseases. Both enantiomers of HNE are presumed to be toxic, and GSTA4-4 has negligible stereoselectivity toward them, despite its high catalytic chemospecificity for alkenals. In contrast to the highly flexible, and substrate promiscuous, GSTA1-1 isoform that has poor catalytic efficiency with HNE, GSTA4-4 has been postulated to be a rigid template that is preorganized for HNE metabolism. However, the combination of high substrate chemoselectivity and low substrate stereoselectivity is intriguing. The mechanism by which GSTA4-4 achieves this combination is important, because it must metabolize both enantiomers of HNE to efficiently detoxify the biologically formed mixture. The crystal structures of GSTA4-4 and an engineered variant of GSTA1-1 with high catalytic efficiency toward HNE, cocrystallized with a GSH-HNE conjugate analogue, demonstrate that GSTA4-4 undergoes no enantiospecific induced fit; instead, the active site residue Arg15 is ideally located to interact with the 4-hydroxyl group of either HNE enantiomer. The results reveal an evolutionary strategy for achieving biologically useful stereopromiscuity toward a toxic racemate, concomitant with high catalytic efficiency and substrate specificity toward an endogenously formed toxin.

摘要

谷胱甘肽转移酶 A4-4(GSTA4-4)将脂质过氧化产物 4-羟基壬烯醛(HNE)与谷胱甘肽结合,是其主要消除途径。HNE 的两种对映异构体都被认为具有毒性,尽管 GSTA4-4 对烯醛具有很高的催化化学特异性,但对它们的立体选择性却可以忽略不计。与高度灵活、底物混杂的 GSTA1-1 同工酶不同,后者与 HNE 的催化效率很差,GSTA4-4 被认为是一种预先组织好的刚性模板,用于 HNE 代谢。然而,高底物化学选择性和低底物立体选择性的结合是很有趣的。GSTA4-4 实现这种结合的机制很重要,因为它必须代谢 HNE 的两种对映异构体,以有效地解毒生物形成的混合物。GSTA4-4 和具有高催化效率的工程变体 GSTA1-1 的晶体结构与 GSH-HNE 缀合物类似物共结晶,表明 GSTA4-4 没有经历对映体特异性诱导契合;相反,活性位点残基 Arg15 被理想地定位以与 HNE 的任一对映体的 4-羟基基团相互作用。结果揭示了一种针对有毒外消旋物实现生物有用的立体混杂的进化策略,同时具有对内生毒素的高催化效率和底物特异性。

相似文献

4
Interactions of glutathione transferases with 4-hydroxynonenal.
Drug Metab Rev. 2011 May;43(2):165-78. doi: 10.3109/03602532.2011.558092. Epub 2011 Mar 14.
5
Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal.
Arch Biochem Biophys. 2010 Dec 15;504(2):182-9. doi: 10.1016/j.abb.2010.09.005. Epub 2010 Sep 15.
6
Loss of glutathione S-transferase A4 accelerates obstruction-induced tubule damage and renal fibrosis.
J Pathol. 2012 Dec;228(4):448-58. doi: 10.1002/path.4067. Epub 2012 Jul 26.
8
Transfection of HepG2 cells with hGSTA4 provides protection against 4-hydroxynonenal-mediated oxidative injury.
Toxicol In Vitro. 2007 Dec;21(8):1365-72. doi: 10.1016/j.tiv.2007.04.004. Epub 2007 Apr 27.

引用本文的文献

1
The role of glutathione S-transferases in human disease pathogenesis and their current inhibitors.
Genes Dis. 2024 Dec 5;12(4):101482. doi: 10.1016/j.gendis.2024.101482. eCollection 2025 Jul.
2
Human glutathione transferases catalyze the reaction between glutathione and nitrooleic acid.
J Biol Chem. 2025 Apr;301(4):108362. doi: 10.1016/j.jbc.2025.108362. Epub 2025 Feb 28.
4
Mechanisms of promiscuity among drug metabolizing enzymes and drug transporters.
FEBS J. 2020 Apr;287(7):1306-1322. doi: 10.1111/febs.15116. Epub 2019 Nov 12.
5
GSTA4 mediates reduction of cisplatin ototoxicity in female mice.
Nat Commun. 2019 Sep 12;10(1):4150. doi: 10.1038/s41467-019-12073-0.
6
Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation.
Arch Biochem Biophys. 2017 Mar 1;617:145-154. doi: 10.1016/j.abb.2016.11.003. Epub 2016 Nov 10.
7
Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research.
Environ Sci Technol. 2016 Feb 16;50(4):1990-9. doi: 10.1021/acs.est.5b04396. Epub 2016 Jan 21.
9
Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling.
Toxicol Appl Pharmacol. 2015 Dec 15;289(3):361-70. doi: 10.1016/j.taap.2015.10.006. Epub 2015 Oct 23.
10
4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product.
Biomolecules. 2015 Sep 30;5(4):2247-337. doi: 10.3390/biom5042247.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Stereochemical configuration of 4-hydroxy-2-nonenal-cysteine adducts and their stereoselective formation in a redox-regulated protein.
J Biol Chem. 2009 Oct 16;284(42):28810-22. doi: 10.1074/jbc.M109.019927. Epub 2009 Aug 19.
4
Emergence of a novel highly specific and catalytically efficient enzyme from a naturally promiscuous glutathione transferase.
Biochim Biophys Acta. 2008 Dec;1780(12):1458-63. doi: 10.1016/j.bbagen.2008.07.007. Epub 2008 Jul 28.
5
The stereochemical course of 4-hydroxy-2-nonenal metabolism by glutathione S-transferases.
J Biol Chem. 2008 Jun 13;283(24):16702-10. doi: 10.1074/jbc.M801725200. Epub 2008 Apr 17.
6
BALBES: a molecular-replacement pipeline.
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):125-32. doi: 10.1107/S0907444907050172. Epub 2007 Dec 5.
7
Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases.
J Biol Chem. 2007 Aug 10;282(32):23264-74. doi: 10.1074/jbc.M700868200. Epub 2007 Jun 8.
8
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
10
Solving structures of protein complexes by molecular replacement with Phaser.
Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):32-41. doi: 10.1107/S0907444906045975. Epub 2006 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验