Suppr超能文献

晶状体间隙连接在生长、分化和动态平衡中的作用。

Lens gap junctions in growth, differentiation, and homeostasis.

机构信息

Department of Physiology and Biophysics, SUNY at Stony Brook, Stony Brook, New York 11794-8661, USA.

出版信息

Physiol Rev. 2010 Jan;90(1):179-206. doi: 10.1152/physrev.00034.2009.

Abstract

The cells of most mammalian organs are connected by groups of cell-to-cell channels called gap junctions. Gap junction channels are made from the connexin (Cx) family of proteins. There are at least 20 isoforms of connexins, and most tissues express more than 1 isoform. The lens is no exception, as it expresses three isoforms: Cx43, Cx46, and Cx50. A common role for all gap junctions, regardless of their Cx composition, is to provide a conduit for ion flow between cells, thus creating a syncytial tissue with regard to intracellular voltage and ion concentrations. Given this rather simple role of gap junctions, a persistent question has been: Why are there so many Cx isoforms and why do tissues express more than one isoform? Recent studies of lens Cx knockout (KO) and knock in (KI) lenses have begun to answer these questions. To understand these roles, one must first understand the physiological requirements of the lens. We therefore first review the development and structure of the lens, its numerous transport systems, how these systems are integrated to generate the lens circulation, the roles of the circulation in lens homeostasis, and finally the roles of lens connexins in growth, development, and the lens circulation.

摘要

大多数哺乳动物器官的细胞通过称为间隙连接的细胞间通道群连接。间隙连接通道由连接蛋白 (Cx) 家族蛋白组成。至少有 20 种连接蛋白异构体,大多数组织表达超过 1 种异构体。晶状体也不例外,它表达三种异构体:Cx43、Cx46 和 Cx50。所有间隙连接的共同作用(无论其 Cx 组成如何)是在细胞之间提供离子流的通道,从而使细胞内电压和离子浓度形成合胞组织。鉴于间隙连接的这种相当简单的作用,一个持续存在的问题是:为什么会有如此多的 Cx 异构体,为什么组织会表达多种异构体?最近对晶状体 Cx 敲除 (KO) 和敲入 (KI) 晶状体的研究开始回答这些问题。为了理解这些作用,人们必须首先了解晶状体的生理需求。因此,我们首先回顾晶状体的发育和结构、其众多的转运系统、这些系统如何整合以产生晶状体循环、循环在晶状体稳态中的作用,以及晶状体连接蛋白在生长、发育和晶状体循环中的作用。

相似文献

1
Lens gap junctions in growth, differentiation, and homeostasis.
Physiol Rev. 2010 Jan;90(1):179-206. doi: 10.1152/physrev.00034.2009.
2
Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression.
Invest Ophthalmol Vis Sci. 2004 Oct;45(10):3629-37. doi: 10.1167/iovs.04-0445.
3
Knock-in of Cx46 partially rescues fiber defects in lenses lacking Cx50.
Mol Vis. 2017 Mar 24;23:160-170. eCollection 2017.
4
Optimal lens epithelial cell proliferation is dependent on the connexin isoform providing gap junctional coupling.
Invest Ophthalmol Vis Sci. 2007 Dec;48(12):5630-7. doi: 10.1167/iovs.06-1540.
5
pH gating of lens fibre connexins.
Pflugers Arch. 2002 Mar;443(5-6):843-51. doi: 10.1007/s00424-001-0760-2. Epub 2001 Dec 13.
7
Connexin 46 (cx46) gap junctions provide a pathway for the delivery of glutathione to the lens nucleus.
J Biol Chem. 2014 Nov 21;289(47):32694-702. doi: 10.1074/jbc.M114.597898. Epub 2014 Oct 7.
8
Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells.
Am J Physiol Cell Physiol. 2015 May 15;308(10):C835-47. doi: 10.1152/ajpcell.00372.2014. Epub 2015 Mar 4.
9
Dominant cataracts result from incongruous mixing of wild-type lens connexins.
J Cell Biol. 2003 Jun 9;161(5):969-78. doi: 10.1083/jcb.200303068. Epub 2003 Jun 2.
10
Roles and regulation of lens epithelial cell connexins.
FEBS Lett. 2014 Apr 17;588(8):1297-303. doi: 10.1016/j.febslet.2013.12.024. Epub 2014 Jan 14.

引用本文的文献

2
G91-deletion in βA3/A1-crystallin induces cellular and molecular changes in mouse lenses leading to congenital cataract development.
PLoS One. 2025 Jul 7;20(7):e0326305. doi: 10.1371/journal.pone.0326305. eCollection 2025.
4
A novel GJA3 mutation causing autosomal dominant congenital perinuclear cataracts.
BMC Ophthalmol. 2025 Apr 2;25(1):164. doi: 10.1186/s12886-025-03978-0.
6
Calcium induced N-terminal gating and pore collapse in connexin-46/50 gap junctions.
bioRxiv. 2025 Feb 14:2025.02.12.637955. doi: 10.1101/2025.02.12.637955.
7
Reversible lipid mediated pH-gating of connexin-46/50 by cryo-EM.
bioRxiv. 2025 Feb 14:2025.02.12.637953. doi: 10.1101/2025.02.12.637953.
9
Deficiency in glutathione peroxidase 4 (GPX4) results in abnormal lens development and newborn cataract.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2407842121. doi: 10.1073/pnas.2407842121. Epub 2024 Nov 19.
10
Ankyrin-B is required for the establishment and maintenance of lens cytoarchitecture, mechanics and clarity.
J Cell Sci. 2024 Dec 15;137(24). doi: 10.1242/jcs.262349. Epub 2024 Dec 18.

本文引用的文献

1
The stratified syncytium of the vertebrate lens.
J Cell Sci. 2009 May 15;122(Pt 10):1607-15. doi: 10.1242/jcs.045203. Epub 2009 Apr 28.
2
Upregulation and maintenance of gap junctional communication in lens cells.
Exp Eye Res. 2009 May;88(5):919-27. doi: 10.1016/j.exer.2008.11.031. Epub 2008 Dec 11.
3
4
The effects of GPX-1 knockout on membrane transport and intracellular homeostasis in the lens.
J Membr Biol. 2009 Jan;227(1):25-37. doi: 10.1007/s00232-008-9141-5. Epub 2008 Dec 9.
5
On the mechanism of organelle degradation in the vertebrate lens.
Exp Eye Res. 2009 Feb;88(2):133-9. doi: 10.1016/j.exer.2008.08.017. Epub 2008 Sep 18.
7
Spatial differences in an integral membrane proteome detected in laser capture microdissected samples.
J Proteome Res. 2008 Jul;7(7):2696-702. doi: 10.1021/pr700737h. Epub 2008 May 20.
10
Differentiation-dependent changes in the membrane properties of fiber cells isolated from the rat lens.
Am J Physiol Cell Physiol. 2008 May;294(5):C1133-45. doi: 10.1152/ajpcell.00315.2007. Epub 2008 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验