Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Biochemistry. 2010 Feb 23;49(7):1396-403. doi: 10.1021/bi9021318.
Ribonucleotide reductase (RNR, 76 kDa) from Lactobacillus leichmannii is a class II RNR that requires adenosylcobalamin (AdoCbl) as a cofactor. It catalyzes the conversion of nucleoside triphosphates to deoxynucleotides and is 100% inactivated by 1 equiv of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate (F(2)CTP) in <2 min. Sephadex G-50 chromatography of the inactivation reaction mixture for 2 min revealed that 0.47 equiv of a sugar moiety is covalently bound to RNR and 0.25 equiv of a cobalt(III) corrin is tightly associated, likely through a covalent interaction with C(419) (Co-S) in the active site of RNR [Lohman, G. J. S., and Stubbe, J. (2010) Biochemistry 49, DOI: 10.1021/bi902132u ]. After 1 h, a similar experiment revealed 0.45 equiv of the Co-S adduct associated with the protein. Thus, at least two pathways are associated with RNR inactivation: one associated with alkylation by the sugar of F(2)CTP and the second with AdoCbl destruction. To determine the fate of [1'-(3)H]F(2)CTP in the latter pathway, the reaction mixture at 2 min was reduced with NaBH(4) (NaB(2)H(4)) and the protein separated from the small molecules using a centrifugation device. The small molecules were dephosphorylated and analyzed by HPLC to reveal 0.25 equiv of a stereoisomer of cytidine, characterized by mass spectrometry and NMR spectroscopy, indicating the trapped nucleotide had lost both of its fluorides and gained an oxygen. High-field ENDOR studies with [1'-(2)H]F(2)CTP from the reaction quenched at 30 s revealed a radical that is nucleotide-based. The relationship between this radical and the trapped cytidine analogue provides insight into the nonalkylative pathway for RNR inactivation relative to the alkylative pathway.
来自乳酸乳球菌的核糖核苷酸还原酶(RNR,76 kDa)是一种 II 类 RNR,需要腺嘌呤核苷酸钴胺素(AdoCbl)作为辅助因子。它催化核苷三磷酸转化为脱氧核苷酸,并在<2 分钟内被 1 当量的 2',2'-二氟-2'-脱氧胞苷 5'-三磷酸(F(2)CTP)完全失活。对失活反应混合物进行 2 分钟的 Sephadex G-50 层析表明,有 0.47 当量的糖部分与 RNR 共价结合,有 0.25 当量的钴(III)钴胺通过与 RNR 活性位点中的 C(419)(Co-S)的共价相互作用紧密相关[Lohman,G. J. S.,和 Stubbe,J.(2010)生物化学 49,DOI:10.1021/bi902132u]。1 小时后,类似的实验表明,与蛋白质相关的 Co-S 加合物有 0.45 当量。因此,至少有两条途径与 RNR 失活有关:一条与 F(2)CTP 的糖的烷基化有关,另一条与 AdoCbl 的破坏有关。为了确定第二种途径中[1'-(3)H]F(2)CTP 的命运,在 2 分钟时用硼氢化钠(NaB(2)H(4))还原反应混合物,并使用离心设备将蛋白质与小分子分离。小分子被去磷酸化并通过 HPLC 分析以揭示 0.25 当量的胞苷立体异构体,通过质谱和 NMR 光谱进行表征,表明捕获的核苷酸已经失去了两个氟原子并获得了一个氧原子。用反应在 30 秒时猝灭的[1'-(2)H]F(2)CTP 进行高场 ENDOR 研究表明,存在一个基于核苷酸的自由基。该自由基与捕获的胞苷类似物之间的关系提供了对 RNR 失活的非烷基化途径相对于烷基化途径的深入了解。