Suppr超能文献

iPS 细胞生成的基因传递系统。

Gene-delivery systems for iPS cell generation.

机构信息

Maine Medical Center Research Institute, Maine Medical Center, COBRE in Stem Biology and Regenerative Medicine, 81 Research Drive, Scarborough, Maine 04074, USA.

出版信息

Expert Opin Biol Ther. 2010 Feb;10(2):231-42. doi: 10.1517/14712590903455989.

Abstract

IMPORTANCE OF THE FIELD

Induced pluripotent stem (iPS) cells offer extraordinary promise for regenerative medicine applications, and provide new opportunities for use in disease modeling, drug screening and drug toxicology. AREAS COVED IN THIS REVIEW: iPS cell technology is still in its infancy. In this review article, we present a comprehensive survey of reprogramming approaches focusing on gene-delivery systems used for generation of iPS cells from somatic cells, categorize gene-delivery vectors, and discuss their advantages and limitations for somatic cell reprogramming. We include pertinent literature published between 2006 and the present.

WHAT THE READER WILL GAIN

Although iPS cell technology has been improved via the use of various gene-delivery vectors, it still suffers from either low reprogramming efficiency or too many genomic modification steps. Extensive work is still required to improve current vectors or explore new vectors for effectively reprogramming human somatic cells into iPS cells, with or without minimal genomic modification steps.

TAKE HOME MESSAGE

A single non-integrating reprogramming vector system with high reprogramming efficiency is probably essential for generation of clinically translatable human iPS cells.

摘要

重要性的领域

诱导多能干细胞(iPS)细胞为再生医学应用提供了非凡的前景,并为疾病建模、药物筛选和药物毒理学的应用提供了新的机会。

本篇综述涵盖的领域

iPS 细胞技术仍处于起步阶段。在这篇综述文章中,我们全面调查了重编程方法,重点介绍了用于从体细胞生成 iPS 细胞的基因传递系统,对基因传递载体进行分类,并讨论了它们在体细胞重编程中的优缺点。我们包括了 2006 年至今发表的相关文献。

读者将获得的收益

尽管 iPS 细胞技术已经通过使用各种基因传递载体得到了改进,但它仍然存在重编程效率低或基因组修饰步骤过多的问题。仍然需要做大量的工作来改进现有的载体或探索新的载体,以便有效地将人类体细胞重编程为 iPS 细胞,无论是否有最小的基因组修饰步骤。

需要吸取的教训

具有高效重编程效率的单一非整合重编程载体系统可能是生成临床上可转化的人类 iPS 细胞所必需的。

相似文献

1
Gene-delivery systems for iPS cell generation.
Expert Opin Biol Ther. 2010 Feb;10(2):231-42. doi: 10.1517/14712590903455989.
2
Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons.
Biochem Biophys Res Commun. 2014 Jul 18;450(1):581-7. doi: 10.1016/j.bbrc.2014.06.014. Epub 2014 Jun 10.
3
Induced pluripotent stem cells: opportunities and challenges.
Philos Trans R Soc Lond B Biol Sci. 2011 Aug 12;366(1575):2198-207. doi: 10.1098/rstb.2011.0016.
5
Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.
Regen Med. 2016 Jan;11(1):105-32. doi: 10.2217/rme.15.79. Epub 2015 Dec 18.
6
piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.
Nature. 2009 Apr 9;458(7239):766-70. doi: 10.1038/nature07863. Epub 2009 Mar 1.
7
Current progress and prospects of induced pluripotent stem cells.
Sci China C Life Sci. 2009 Jul;52(7):622-36. doi: 10.1007/s11427-009-0092-6. Epub 2009 Jul 30.
8
Advancements in reprogramming strategies for the generation of induced pluripotent stem cells.
J Assist Reprod Genet. 2011 Apr;28(4):291-301. doi: 10.1007/s10815-011-9552-6. Epub 2011 Mar 9.
10
Transposon-mediated gene transfer into adult and induced pluripotent stem cells.
Curr Gene Ther. 2011 Oct;11(5):406-13. doi: 10.2174/156652311797415836.

引用本文的文献

3
Advanced therapy to cure diabetes: mission impossible is now possible?
Front Cell Dev Biol. 2024 Nov 19;12:1484859. doi: 10.3389/fcell.2024.1484859. eCollection 2024.
5
Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies.
Int J Surg. 2024 Oct 1;110(10):6432-6455. doi: 10.1097/JS9.0000000000001892.
8
Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to fight cancer.
Bioact Mater. 2022 Aug 5;25:527-540. doi: 10.1016/j.bioactmat.2022.07.021. eCollection 2023 Jul.
10
Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming.
Front Bioeng Biotechnol. 2022 Jul 7;10:799152. doi: 10.3389/fbioe.2022.799152. eCollection 2022.

本文引用的文献

1
Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2.
Cell Stem Cell. 2009 Oct 2;5(4):353-7. doi: 10.1016/j.stem.2009.09.008.
3
Senescence impairs successful reprogramming to pluripotent stem cells.
Genes Dev. 2009 Sep 15;23(18):2134-9. doi: 10.1101/gad.1811609. Epub 2009 Aug 20.
4
Suppression of induced pluripotent stem cell generation by the p53-p21 pathway.
Nature. 2009 Aug 27;460(7259):1132-5. doi: 10.1038/nature08235. Epub 2009 Aug 9.
5
Immortalization eliminates a roadblock during cellular reprogramming into iPS cells.
Nature. 2009 Aug 27;460(7259):1145-8. doi: 10.1038/nature08285. Epub 2009 Aug 9.
6
A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity.
Nature. 2009 Aug 27;460(7259):1149-53. doi: 10.1038/nature08287. Epub 2009 Aug 9.
7
The Ink4/Arf locus is a barrier for iPS cell reprogramming.
Nature. 2009 Aug 27;460(7259):1136-9. doi: 10.1038/nature08290. Epub 2009 Aug 9.
8
Linking the p53 tumour suppressor pathway to somatic cell reprogramming.
Nature. 2009 Aug 27;460(7259):1140-4. doi: 10.1038/nature08311. Epub 2009 Aug 9.
9
Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells.
Circulation. 2009 Aug 4;120(5):408-16. doi: 10.1161/CIRCULATIONAHA.109.865154. Epub 2009 Jul 20.
10
Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins.
Cell Stem Cell. 2009 Jun 5;4(6):472-6. doi: 10.1016/j.stem.2009.05.005. Epub 2009 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验