Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA.
J Neurosci. 2010 Jan 20;30(3):1086-95. doi: 10.1523/JNEUROSCI.5120-09.2010.
Calpain is a calcium-dependent protease that plays a significant role in synaptic plasticity, cell motility, and neurodegeneration. Two major calpain isoforms are present in brain, with mu-calpain (calpain1) requiring micromolar calcium concentrations for activation and m-calpain (calpain2) needing millimolar concentrations. Recent studies in fibroblasts indicate that epidermal growth factor (EGF) can activate m-calpain independently of calcium via mitogen-activated protein kinase (MAPK)-mediated phosphorylation. In neurons, MAPK is activated by both brain-derived neurotrophic factor (BDNF) and EGF. We therefore examined whether these growth factors could activate m-calpain by MAPK-dependent phosphorylation using cultured primary neurons and HEK-TrkB cells, both of which express BDNF and EGF receptors. Calpain activation was monitored by quantitative analysis of spectrin degradation and by a fluorescence resonance energy transfer (FRET)-based assay, which assessed the truncation of a calpain-specific peptide flanked by the FRET fluorophore pair DABCYL and EDANS. In both cell types, BDNF and EGF rapidly elicited calpain activation, which was completely blocked by MAPK and calpain inhibitors. BDNF stimulated m-calpain but not mu-calpain serine phosphorylation, an effect also blocked by MAPK inhibitors. Remarkably, BDNF- and EGF-induced calpain activation was preferentially localized in dendrites and dendritic spines of hippocampal neurons and was associated with actin polymerization, which was prevented by calpain inhibition. Our results indicate that, in cultured neurons, both BDNF and EGF activate m-calpain by MAPK-mediated phosphorylation. These results strongly support a role for calpain in synaptic plasticity and may explain why m-calpain, although widely expressed in CNS, requires nonphysiological calcium levels for activation.
钙蛋白酶是一种依赖钙的蛋白酶,在突触可塑性、细胞运动和神经退行性变中发挥重要作用。脑中存在两种主要的钙蛋白酶同工型,μ-钙蛋白酶(钙蛋白酶 1)需要微摩尔浓度的钙才能激活,而 m-钙蛋白酶(钙蛋白酶 2)需要毫摩尔浓度的钙。最近在成纤维细胞中的研究表明,表皮生长因子(EGF)可以通过丝裂原激活蛋白激酶(MAPK)介导的磷酸化作用,独立于钙来激活 m-钙蛋白酶。在神经元中,MAPK 被脑源性神经营养因子(BDNF)和 EGF 激活。因此,我们使用培养的原代神经元和表达 BDNF 和 EGF 受体的 HEK-TrkB 细胞,研究了这些生长因子是否可以通过 MAPK 依赖性磷酸化来激活 m-钙蛋白酶。钙蛋白酶的激活通过 spectrin 降解的定量分析和基于荧光共振能量转移(FRET)的测定来监测,该测定评估了由 FRET 荧光团对 DABCYL 和 EDANS 侧翼的钙蛋白酶特异性肽的截断。在这两种细胞类型中,BDNF 和 EGF 迅速引发钙蛋白酶的激活,该激活被 MAPK 和钙蛋白酶抑制剂完全阻断。BDNF 刺激 m-钙蛋白酶但不刺激 μ-钙蛋白酶丝氨酸磷酸化,该效应也被 MAPK 抑制剂阻断。值得注意的是,BDNF 和 EGF 诱导的钙蛋白酶激活优先定位于海马神经元的树突和树突棘,并且与肌动蛋白聚合有关,钙蛋白酶抑制可阻止肌动蛋白聚合。我们的结果表明,在培养的神经元中,BDNF 和 EGF 通过 MAPK 介导的磷酸化作用激活 m-钙蛋白酶。这些结果强烈支持钙蛋白酶在突触可塑性中的作用,并且可能解释为什么 m-钙蛋白酶尽管在中枢神经系统中广泛表达,但需要非生理水平的钙才能激活。