Sanfilippo Antonio, Baddeley Bob, Beagley Nathaniel, McDermott Jason, Riensche Roderick, Taylor Ronald, Gopalan Banu
Pacific Northwest National Laboratory, Richland, WA 99352, USA.
Int J Comput Biol Drug Des. 2009;2(3):221-35. doi: 10.1504/IJCBDD.2009.030114. Epub 2009 Dec 10.
Most current approaches to automatic pathway generation are based on a reverse engineering approach in which pathway plausibility is solely derived from gene expression data and not independently validated. Alternative approaches use prior biological knowledge to validate automatically inferred pathways, but the prior knowledge is usually not sufficiently tuned to the pathology of focus. We present a novel pathway generation approach that combines insights from the reverse engineering and knowledge-based approaches to increase the biological plausibility of automatically generated regulatory networks and describe an application of this approach to transcriptional data from a mouse model of neuroprotection during stroke.
目前大多数自动生成通路的方法基于逆向工程方法,即通路的合理性仅从基因表达数据中得出,且未得到独立验证。其他方法利用先验生物学知识来验证自动推断的通路,但先验知识通常未充分针对所关注的病理学进行调整。我们提出了一种新颖的通路生成方法,该方法结合了逆向工程方法和基于知识的方法的见解,以提高自动生成的调控网络的生物学合理性,并描述了此方法在中风期间神经保护小鼠模型转录数据中的应用。