Suppr超能文献

蛋白酶体活性的潜在别构调节剂。

Potential allosteric modulators of the proteasome activity.

机构信息

Faculty of Chemistry, University of Gdansk, Sobieskiego 18, Gdansk 80-952, Poland.

出版信息

Biopolymers. 2010 May;93(5):481-95. doi: 10.1002/bip.21381.

Abstract

Proteasome, consisting of a tube-shaped proteolytic core particle and attached to it regulatory modules, is a multifunctional enzymatic complex essential for the ubiquitin-proteasome metabolic pathway. Due to its immense involvement in regulation of cellular physiology, the proteasome is an acknowledged anticancer drug target and potential target to treat inflammatory or degenerative diseases. So far, competitive inhibitors of the core particle gain most consideration as drugs. We postulate that noncompetitively-acting small-molecule compounds would provide excellent means to precisely regulate actions of the proteasome. In this study, we evaluated five short peptides based on sequences of two proteins known to interact with the core proteasome: HIV-1 Tat and PA28/REG activator. We performed Circular Dichroism (CD), Fourier Transformed Infrared Spectroscopy (FTIR), and Nuclear Magnetic Resonance (NMR) analysis, supplemented by MD simulations, and tested influence of the peptides on performance of the core particle active sites and functioning of regulatory modules. We found that PP2-containing Tat peptides are noncompetitive inhibitors of the core, interfering with the actions of PA28alphabeta activator. In addition, at low concentrations the turn-prone Tat2 is able to activate the latent core. The random coil-structured PA28-derived peptides display only weak or nondetectable direct effects on the core activities, exhibiting, however, a positive cooperation with activity-enhancing actions of PA28alphabeta.

摘要

蛋白酶体由一个管状的蛋白酶核心颗粒和与其相连的调节模块组成,是泛素蛋白酶体代谢途径中必不可少的多功能酶复合物。由于其在调节细胞生理过程中具有巨大的作用,蛋白酶体是公认的抗癌药物靶点,也是治疗炎症或退行性疾病的潜在靶点。到目前为止,核心颗粒的竞争性抑制剂作为药物得到了最多的关注。我们假设非竞争性作用的小分子化合物将为精确调节蛋白酶体的作用提供极好的手段。在这项研究中,我们评估了基于两种已知与核心蛋白酶体相互作用的蛋白质(HIV-1 Tat 和 PA28/REG 激活剂)序列的五个短肽。我们进行了圆二色性(CD)、傅里叶变换红外光谱(FTIR)和核磁共振(NMR)分析,辅之以 MD 模拟,并测试了这些肽对核心颗粒活性部位性能和调节模块功能的影响。我们发现含有 PP2 的 Tat 肽是核心的非竞争性抑制剂,干扰了 PA28alphabeta 激活剂的作用。此外,在低浓度下,易形成转角的 Tat2 能够激活潜伏的核心。随机卷曲结构的 PA28 衍生肽对核心活性仅显示出微弱或不可检测的直接影响,但与 PA28alphabeta 增强活性的作用具有正协同作用。

相似文献

1
Potential allosteric modulators of the proteasome activity.
Biopolymers. 2010 May;93(5):481-95. doi: 10.1002/bip.21381.
2
Dissecting a role of a charge and conformation of Tat2 peptide in allosteric regulation of 20S proteasome.
J Pept Sci. 2014 Aug;20(8):649-56. doi: 10.1002/psc.2642. Epub 2014 May 13.
4
PA28αβ reduces size and increases hydrophilicity of 20S immunoproteasome peptide products.
Chem Biol. 2014 Apr 24;21(4):470-480. doi: 10.1016/j.chembiol.2014.02.006. Epub 2014 Mar 13.
5
New Peptide-Based Pharmacophore Activates 20S Proteasome.
Molecules. 2020 Mar 22;25(6):1439. doi: 10.3390/molecules25061439.
7
Proline- and Arginine-Rich Peptides as Flexible Allosteric Modulators of Human Proteasome Activity.
J Med Chem. 2019 Jan 10;62(1):359-370. doi: 10.1021/acs.jmedchem.8b01025. Epub 2018 Dec 3.
8
PA28γ: New Insights on an Ancient Proteasome Activator.
Biomolecules. 2021 Feb 5;11(2):228. doi: 10.3390/biom11020228.
9
Atomic force microscopy of proteasome assemblies.
Methods Mol Biol. 2011;736:117-32. doi: 10.1007/978-1-61779-105-5_9.

引用本文的文献

3
Characterization of platinum(II) complexes exhibiting inhibitory activity against the 20S proteasome.
R Soc Open Sci. 2020 Aug 19;7(8):200545. doi: 10.1098/rsos.200545. eCollection 2020 Aug.
4
New Peptide-Based Pharmacophore Activates 20S Proteasome.
Molecules. 2020 Mar 22;25(6):1439. doi: 10.3390/molecules25061439.
5
Cationic porphyrins are tunable gatekeepers of the 20S proteasome.
Chem Sci. 2016 Feb 1;7(2):1286-1297. doi: 10.1039/c5sc03312h. Epub 2015 Nov 9.
8
Sequence-specific alterations of epitope production by HIV protease inhibitors.
J Immunol. 2014 Apr 15;192(8):3496-506. doi: 10.4049/jimmunol.1302805. Epub 2014 Mar 10.
9
Inhibition of human and yeast 20S proteasome by analogues of trypsin inhibitor SFTI-1.
PLoS One. 2014 Feb 25;9(2):e89465. doi: 10.1371/journal.pone.0089465. eCollection 2014.
10
Harnessing proteasome dynamics and allostery in drug design.
Antioxid Redox Signal. 2014 Dec 10;21(17):2286-301. doi: 10.1089/ars.2013.5816. Epub 2014 Feb 21.

本文引用的文献

2
Structural models for interactions between the 20S proteasome and its PAN/19S activators.
J Biol Chem. 2010 Jan 1;285(1):13-7. doi: 10.1074/jbc.C109.070425. Epub 2009 Nov 4.
3
Conformational changes in salivary proline-rich protein 1 upon adsorption to calcium phosphate crystals.
Langmuir. 2007 Oct 23;23(22):11200-5. doi: 10.1021/la7013978. Epub 2007 Sep 20.
4
20S proteasome and its inhibitors: crystallographic knowledge for drug development.
Chem Rev. 2007 Mar;107(3):687-717. doi: 10.1021/cr0502504. Epub 2007 Feb 23.
5
Allosteric regulators of the proteasome: potential drugs and a novel approach for drug design.
Curr Med Chem. 2006;13(2):155-65. doi: 10.2174/092986706775197926.
6
Regulated protein degradation.
Trends Biochem Sci. 2005 Jun;30(6):283-6. doi: 10.1016/j.tibs.2005.04.005.
8
Molecular machines for protein degradation.
Chembiochem. 2005 Feb;6(2):222-56. doi: 10.1002/cbic.200400313.
9
Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors.
Trends Cell Biol. 2005 Jan;15(1):27-33. doi: 10.1016/j.tcb.2004.11.003.
10
The polyproline II conformation in short alanine peptides is noncooperative.
Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15352-7. doi: 10.1073/pnas.0406657101. Epub 2004 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验