Suppr超能文献

清醒雪貂下丘中的迟滞细胞。

Lagged cells in the inferior colliculus of the awake ferret.

机构信息

Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.

出版信息

Eur J Neurosci. 2010 Jan;31(1):42-8. doi: 10.1111/j.1460-9568.2009.07037.x. Epub 2009 Dec 18.

Abstract

Neurons in the primary auditory cortex (AI) encode complex features of the spectral content of sound, such as direction selectivity. Recent findings of temporal symmetry in AI predict a specific organization of the subcortical input into the cortex that contributes to the emergence of direction selectivity. We demonstrate two subpopulations of neurons in the central nucleus of the inferior colliculus, which differ in their steady-state temporal response profile: lagged and non-lagged. The lagged cells (23%) are shifted in temporal phase with respect to non-lagged cells, and are characterized by an 'inhibition first' and delayed excitation in their spectro-temporal receptive fields. Non-lagged cells (77%) have a canonical 'excitation first' response. However, we find no difference in the response onset latency to pure tone stimuli between the two subpopulations. Given the homogeneity of tonal response latency, we predict that these lagged cells receive inhibitory input mediated by cortical feedback projections.

摘要

初级听觉皮层(AI)中的神经元对声音的频谱内容等复杂特征进行编码,例如方向选择性。AI 中时间对称性的最新发现预测了皮质下输入到皮质的特定组织,有助于方向选择性的出现。我们在中脑下丘的中央核中证明了两种神经元亚群,它们在稳态时间响应谱上存在差异:滞后和非滞后。滞后细胞(23%)相对于非滞后细胞在时间相位上发生偏移,并且在它们的频谱时间感受野中表现出“先抑制后兴奋”的特征。非滞后细胞(77%)具有典型的“先兴奋后抑制”反应。然而,我们在两个亚群之间的纯音刺激的反应起始潜伏期方面没有发现差异。鉴于音调反应潜伏期的均一性,我们预测这些滞后细胞会受到皮质反馈投射介导的抑制性输入。

相似文献

1
Lagged cells in the inferior colliculus of the awake ferret.
Eur J Neurosci. 2010 Jan;31(1):42-8. doi: 10.1111/j.1460-9568.2009.07037.x. Epub 2009 Dec 18.
2
Spectrotemporal response properties of inferior colliculus neurons in alert monkey.
J Neurosci. 2009 Aug 5;29(31):9725-39. doi: 10.1523/JNEUROSCI.5459-08.2009.
3
Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
Neuroscience. 2007 Sep 7;148(3):806-14. doi: 10.1016/j.neuroscience.2007.06.027. Epub 2007 Aug 10.
4
Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
J Neurophysiol. 2003 Jul;90(1):456-76. doi: 10.1152/jn.00851.2002. Epub 2003 Mar 26.
6
Descending and tonotopic projection patterns from the auditory cortex to the inferior colliculus.
Neuroscience. 2015 Aug 6;300:325-37. doi: 10.1016/j.neuroscience.2015.05.032. Epub 2015 May 19.
7
Organization and trade-off of spectro-temporal tuning properties of duration-tuned neurons in the mammalian inferior colliculus.
J Neurophysiol. 2014 May;111(10):2047-60. doi: 10.1152/jn.00850.2013. Epub 2014 Feb 26.
8
A temporal integration mechanism enhances frequency selectivity of broadband inputs to inferior colliculus.
PLoS Biol. 2019 Jun 24;17(6):e2005861. doi: 10.1371/journal.pbio.2005861. eCollection 2019 Jun.
9
Spatial representation of corticofugal input in the inferior colliculus: a multicontact silicon probe approach.
Exp Brain Res. 2003 Dec;153(4):530-42. doi: 10.1007/s00221-003-1671-6. Epub 2003 Oct 22.
10
Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus.
J Neurophysiol. 1997 May;77(5):2360-72. doi: 10.1152/jn.1997.77.5.2360.

引用本文的文献

1
Sparse codes for speech predict spectrotemporal receptive fields in the inferior colliculus.
PLoS Comput Biol. 2012;8(7):e1002594. doi: 10.1371/journal.pcbi.1002594. Epub 2012 Jul 12.
2
Dynamics of phase-independent spectro-temporal tuning in primary auditory cortex of the awake ferret.
Neuroscience. 2012 Jul 12;214:28-35. doi: 10.1016/j.neuroscience.2012.04.029. Epub 2012 Apr 21.

本文引用的文献

1
Dynamics of spectro-temporal tuning in primary auditory cortex of the awake ferret.
Hear Res. 2009 Oct;256(1-2):118-30. doi: 10.1016/j.heares.2009.07.005. Epub 2009 Jul 18.
2
Corticofugal modulation of the paradoxical latency shifts of inferior collicular neurons.
J Neurophysiol. 2008 Aug;100(2):1127-34. doi: 10.1152/jn.90508.2008. Epub 2008 Jul 2.
3
Lagged cells.
Neurosignals. 2008;16(2-3):209-25. doi: 10.1159/000111564. Epub 2008 Feb 5.
4
Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
Neuroscience. 2007 Sep 7;148(3):806-14. doi: 10.1016/j.neuroscience.2007.06.027. Epub 2007 Aug 10.
5
Temporal symmetry in primary auditory cortex: implications for cortical connectivity.
Neural Comput. 2007 Mar;19(3):583-638. doi: 10.1162/neco.2007.19.3.583.
7
Intracellular recording reveals temporal integration in inferior colliculus neurons of awake bats.
J Neurophysiol. 2007 Feb;97(2):1368-78. doi: 10.1152/jn.00976.2006. Epub 2006 Nov 29.
8
Chronically recording with a multi-electrode array device in the auditory cortex of an awake ferret.
J Neurosci Methods. 2007 Mar 30;161(1):101-11. doi: 10.1016/j.jneumeth.2006.10.013. Epub 2006 Nov 28.
9
Response adaptation to broadband sounds in primary auditory cortex of the awake ferret.
Hear Res. 2006 Nov;221(1-2):91-103. doi: 10.1016/j.heares.2006.08.002. Epub 2006 Sep 18.
10
The ferret auditory cortex: descending projections to the inferior colliculus.
Cereb Cortex. 2007 Feb;17(2):475-91. doi: 10.1093/cercor/bhj164. Epub 2006 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验