Instituto de Telecomunicações, Instituto Superior Técnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
Anal Chem. 2010 Feb 15;82(4):1462-9. doi: 10.1021/ac902569e.
A rapid detection of the nonauthenticity of suspect tablets is a key first step in the fight against pharmaceutical counterfeiting. The chemical characterization of these tablets is the logical next step to evaluate their impact on patient health and help authorities in tracking their source. Hyperspectral unmixing of near-infrared (NIR) image data is an emerging effective technology to infer the number of compounds, their spectral signatures, and the mixing fractions in a given tablet, with a resolution of a few tens of micrometers. In a linear mixing scenario, hyperspectral vectors belong to a simplex whose vertices correspond to the spectra of the compounds present in the sample. SISAL (simplex identification via split augmented Lagrangian), MVSA (minimum volume simplex analysis), and MVES (minimum-volume enclosing simplex) are recent algorithms designed to identify the vertices of the minimum volume simplex containing the spectral vectors and the mixing fractions at each pixel (vector). This work demonstrates the usefulness of these techniques, based on minimum volume criteria, for unmixing NIR hyperspectral data of tablets. The experiments herein reported show that SISAL/MVSA and MVES largely outperform MCR-ALS (multivariate curve resolution-alternating least-squares), which is considered the state-of-the-art in spectral unmixing for analytical chemistry. These experiments are based on synthetic data (studying the effect of noise and the presence/absence of pure pixels) and on a real data set composed of NIR images of counterfeit tablets.
快速检测可疑片剂的真伪是打击药品造假的关键第一步。对这些片剂进行化学特征分析是评估其对患者健康影响并帮助当局追踪其来源的合乎逻辑的下一步。近红外(NIR)图像数据的高光谱解混是一种新兴的有效技术,可以推断给定片剂中化合物的数量、它们的光谱特征以及混合分数,分辨率可达几十微米。在线性混合情况下,高光谱向量属于一个单纯形,其顶点对应于样品中存在的化合物的光谱。SISAL(通过分裂增广拉格朗日法进行单纯形识别)、MVSA(最小体积单纯形分析)和 MVES(最小体积包围单纯形)是最近设计的算法,用于识别包含光谱向量和每个像素(向量)处的混合分数的最小体积单纯形的顶点。这项工作基于最小体积标准,展示了这些技术在解混 NIR 高光谱片剂数据方面的有用性。本文报告的实验表明,SISAL/MVSA 和 MVES 在很大程度上优于 MCR-ALS(多变量曲线分辨率交替最小二乘法),后者被认为是分析化学中光谱解混的最新技术。这些实验基于合成数据(研究噪声的影响以及纯像素的存在/不存在)和由假冒片剂的 NIR 图像组成的真实数据集。