Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106 Taiwan.
Langmuir. 2010 Mar 16;26(6):4196-206. doi: 10.1021/la903246v.
In this study, we synthesized organic/inorganic hybrid materials containing cadmium sulfide (CdS) nanoparticles using a novel amphiphilic conducting block copolymer as a synergistic structure-directing template and an efficient exciton quencher of the hybrid. The amphiphilic rod-coil block copolymer of polyphenylene-b-poly(2-vinyl pyridine) (PPH-PVP) was first prepared from its coil-coil precursor block copolymer of poly(1,3-cyclohexadiene)-b-poly(2-vinyl pyridine) (PCHD-PVP) by using sequential anionic polymerization followed by the aromatization reaction of converting the PCHD block to form conducting PPH. The synthesized PCHD-PVP block copolymers self-assembled into different bulk nanostructures of lamellae, cylinders, and spheres at a volume fraction similar to that of many coil-coil block copolymer systems. However, an enhanced chain-stiffness-induced morphological transformation was observed after the aromatization reaction. This is evidenced by the TEM observation in which both spherical and cylindrical structured PCHD-PVPs transform into lamellar structured PPH-PVPs after aromatization. In addition to the bulk-phase transformation, the rigid-rod characteristic of the conducting PPH block also affects the self-assembling property of the block copolymers in their solution state. CdS nanoparticles were synthesized in situ in a selective solvent of THF using PCHD-PVP and PPH-PVP micelles as nanoreactors. The PPH-PVP/Cd ion in THF exhibits a new ringlike structure of uniform size (approximately 50 nm) with PPH in the inner rim and complexed PVP/Cd ions in the outer rim as a result of the effects of strong intermolecular forces between PPH segments and the solvophobic interaction. CdS nanoclusters were subsequently synthesized in situ from the PPH-PVP/Cd(2+) ring structure, forming a nanohybrid with intimate contact between the PPH domain and CdS nanoparticles. In particular, we found that there is an efficient energy/electron transfer between the conducting PPH domain and CdS nanoparticles in the hybrid, resulting in an enhanced PL quenching effect. The novel nanohybrid shows the potential to be used for optoelectronic applications.
在这项研究中,我们使用一种新型的两亲性导电嵌段共聚物作为协同结构导向模板和混合体的高效激子猝灭剂,合成了含有硫化镉 (CdS) 纳米粒子的有机/无机杂化材料。首先,通过顺序阴离子聚合制备了从其无规共聚物前体嵌段共聚物聚(1,3-环己二烯)-b-聚(2-乙烯基吡啶)(PCHD-PVP)的聚苯撑-b-聚(2-乙烯基吡啶)(PPH-PVP)两亲性棒- 线圈嵌段共聚物,然后通过将 PCHD 嵌段芳构化为形成导电 PPH 的反应来进行。合成的 PCHD-PVP 嵌段共聚物在类似于许多无规共聚物体系的体积分数下自组装成不同的体相纳米结构,如层状、圆柱状和球状。然而,芳构化反应后观察到增强的链刚性诱导的形态转变。这可以通过 TEM 观察到,其中 PCHD-PVP 的球形和圆柱形结构在芳构化后都转变为 PPH-PVP 的层状结构。除了体相转变之外,导电 PPH 嵌段的刚性棒状特征还会影响嵌段共聚物在其溶液状态下的自组装性质。使用 PCHD-PVP 和 PPH-PVP 胶束作为纳米反应器,在选择性溶剂 THF 中就地合成了 CdS 纳米粒子。THF 中的 PPH-PVP/Cd 离子呈现出新的环状结构,具有均匀的尺寸(约 50nm),PPH 在内部边缘,复合的 PVP/Cd 离子在外部边缘,这是由于 PPH 段之间的强分子间力和溶剂疏水力的影响。随后,从 PPH-PVP/Cd(2+) 环结构中就地合成了 CdS 纳米团簇,形成了 PPH 域和 CdS 纳米粒子之间具有紧密接触的纳米杂化物。特别是,我们发现杂化体中导电 PPH 域和 CdS 纳米粒子之间存在有效的能量/电子转移,从而导致 PL 猝灭效应增强。新型纳米杂化物具有在光电子应用中应用的潜力。