Eulenburg Volker, Gomeza Jesús
Department for Neurochemistry, Max-Planck Institute for Brain Research, 60529 Frankfurt, Germany.
Brain Res Rev. 2010 May;63(1-2):103-12. doi: 10.1016/j.brainresrev.2010.01.003. Epub 2010 Jan 26.
Synaptic neurotransmission at high temporal and spatial resolutions requires efficient removal and/or inactivation of presynaptically released transmitter to prevent spatial spreading of transmitter by diffusion and allow for fast termination of the postsynaptic response. This action must be carefully regulated to result in the fine tuning of inhibitory and excitatory neurotransmission, necessary for the proper processing of information in the central nervous system. At many synapses, high-affinity neurotransmitter transporters are responsible for transmitter deactivation by removing it from the synaptic cleft. The most prevailing neurotransmitters, glutamate, which mediates excitatory neurotransmission, as well as GABA and glycine, which act as inhibitory neurotransmitters, use these uptake systems. Neurotransmitter transporters have been found in both neuronal and glial cells, thus suggesting high cooperativity between these cell types in the control of extracellular transmitter concentrations. The generation and analysis of animals carrying targeted disruptions of transporter genes together with the use of selective inhibitors have allowed examining the contribution of individual transporter subtypes to synaptic transmission. This revealed the predominant role of glial expressed transporters in maintaining low extrasynaptic neurotransmitter levels. Additionally, transport activity has been shown to be actively regulated on both transcriptional and post-translational levels, which has important implications for synapse function under physiological and pathophysiological conditions. The analysis of these mechanisms will enhance not only our understanding of synapse function but will reveal new therapeutic strategies for the treatment of human neurological diseases.
在高的时间和空间分辨率下,突触神经传递需要高效清除和/或灭活突触前释放的递质,以防止递质通过扩散进行空间扩散,并使突触后反应快速终止。这种作用必须得到精确调节,以实现抑制性和兴奋性神经传递的精细调节,这对于中枢神经系统中信息的正确处理是必要的。在许多突触中,高亲和力神经递质转运体通过从突触间隙清除递质来负责递质的失活。最主要的神经递质,介导兴奋性神经传递的谷氨酸,以及作为抑制性神经递质的γ-氨基丁酸(GABA)和甘氨酸,都利用这些摄取系统。在神经元和神经胶质细胞中都发现了神经递质转运体,这表明这些细胞类型在控制细胞外递质浓度方面具有高度协同性。对携带转运体基因靶向破坏的动物进行的研究以及使用选择性抑制剂,使得我们能够研究单个转运体亚型对突触传递的贡献。这揭示了神经胶质细胞表达的转运体在维持低突触外神经递质水平方面的主要作用。此外,已经表明转运活性在转录和翻译后水平上都受到积极调节,这对于生理和病理生理条件下的突触功能具有重要意义。对这些机制的分析不仅将增进我们对突触功能的理解,还将揭示治疗人类神经疾病的新治疗策略。