Suppr超能文献

利用双捕集拉曼光谱和弹性光散射技术对芽孢杆菌属单孢子湿热失活动力学进行表征。

Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering.

机构信息

Department of Physics, East Carolina University, Greenville, NC 27858-4353, USA.

出版信息

Appl Environ Microbiol. 2010 Mar;76(6):1796-805. doi: 10.1128/AEM.02851-09. Epub 2010 Jan 22.

Abstract

Dual-trap laser tweezers Raman spectroscopy (LTRS) and elastic light scattering (ELS) were used to investigate dynamic processes during high-temperature treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis in water. Major conclusions from these studies included the following. (i) After spores of all three species were added to water at 80 to 90 degrees C, the level of the 1:1 complex of Ca(2+) and dipicolinic acid (CaDPA; approximately 25% of the dry weight of the spore core) in individual spores remained relatively constant during a highly variable lag time (T(lag)), and then CaDPA was released within 1 to 2 min. (ii) The T(lag) values prior to rapid CaDPA release and thus the times for wet-heat killing of individual spores of all three species were very heterogeneous. (iii) The heterogeneity in kinetics of wet-heat killing of individual spores was not due to differences in the microscopic physical environments during heat treatment. (iv) During the wet-heat treatment of spores of all three species, spore protein denaturation largely but not completely accompanied rapid CaDPA release, as some changes in protein structure preceded rapid CaDPA release. (v) Changes in the ELS from individual spores of all three species were strongly correlated with the release of CaDPA. The ELS intensities of B. cereus and B. megaterium spores decreased gradually and reached minima at T(1) when approximately 80% of spore CaDPA was released, then increased rapidly until T(2) when full CaDPA release was complete, and then remained nearly constant. The ELS intensity of B. subtilis spores showed similar features, although the intensity changed minimally, if at all, prior to T(1). (vi) Carotenoids in B. megaterium spores' inner membranes exhibited two changes during heat treatment. First, the carotenoid's two Raman bands at 1,155 and 1,516 cm(-1) decreased rapidly to a low value and to zero, respectively, well before T(lag), and then the residual 1,155-cm(-1) band disappeared, in parallel with the rapid CaDPA release beginning at T(lag).

摘要

双捕获激光镊子拉曼光谱(LTRS)和弹性光散射(ELS)用于研究在 80 至 90°C 下高温处理单个蜡样芽孢杆菌、巨大芽孢杆菌和枯草芽孢杆菌孢子时的动态过程。这些研究的主要结论包括以下几点。(i) 在将这三种细菌的孢子加入 80 至 90°C 的水中后,在高度变化的滞后时间(T(lag))内,单个孢子中钙(Ca)与二吡啶羧酸(CaDPA;占孢子核心干重的约 25%)的 1:1 复合物的水平相对保持恒定,然后在 1 至 2 分钟内释放 CaDPA。(ii) 所有三种细菌的单个孢子快速释放 CaDPA 之前的 T(lag)值,以及所有三种细菌的单个孢子湿热致死的时间差异很大。(iii) 单个孢子湿热致死动力学的异质性不是由于热处理过程中微观物理环境的差异造成的。(iv) 在所有三种细菌的孢子湿热处理过程中,孢子蛋白变性在很大程度上但不完全伴随着 CaDPA 的快速释放,因为一些蛋白质结构的变化先于 CaDPA 的快速释放。(v) 所有三种细菌的单个孢子的 ELS 变化与 CaDPA 的释放密切相关。蜡样芽孢杆菌和巨大芽孢杆菌孢子的 ELS 强度逐渐降低,在 T(1)时达到最小值,此时大约 80%的孢子 CaDPA 被释放,然后迅速增加,直到 T(2)时 CaDPA 完全释放,然后几乎保持不变。枯草芽孢杆菌孢子的 ELS 强度也具有类似的特征,尽管在 T(1)之前,强度可能没有变化,也可能有微小变化。(vi) 巨大芽孢杆菌孢子内膜中的类胡萝卜素在热处理过程中发生了两次变化。首先,在 T(lag)之前,类胡萝卜素在 1155 和 1516 cm(-1)处的两个拉曼带迅速降低到低值和零值,然后残留的 1155-cm(-1)带消失,与 T(lag)开始时快速释放 CaDPA平行。

相似文献

1
4
Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species.
Appl Environ Microbiol. 2018 Mar 19;84(7). doi: 10.1128/AEM.02618-17. Print 2018 Apr 1.
7
Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex.
Lett Appl Microbiol. 2016 Oct;63(4):247-53. doi: 10.1111/lam.12615. Epub 2016 Aug 2.
8
Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens.
J Appl Microbiol. 2012 Oct;113(4):824-36. doi: 10.1111/j.1365-2672.2012.05387.x. Epub 2012 Aug 2.
9
Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation.
J Bacteriol. 2009 Sep;191(18):5584-91. doi: 10.1128/JB.00736-09. Epub 2009 Jul 10.

引用本文的文献

1
Identification and characterization of new proteins crucial for bacterial spore resistance and germination.
Front Microbiol. 2023 Apr 11;14:1161604. doi: 10.3389/fmicb.2023.1161604. eCollection 2023.
2
Heat Activation and Inactivation of Bacterial Spores: Is There an Overlap?
Appl Environ Microbiol. 2022 Mar 8;88(5):e0232421. doi: 10.1128/aem.02324-21. Epub 2022 Jan 12.
3
Proteomic response and molecular regulatory mechanisms of Bacillus cereus spores under ultrasound treatment.
Ultrason Sonochem. 2021 Oct;78:105732. doi: 10.1016/j.ultsonch.2021.105732. Epub 2021 Aug 21.
5
Studying the effects of several heat-inactivated bacteria on colon and breast cancer cells.
Mol Biol Res Commun. 2019 Jun;8(2):91-98. doi: 10.22099/mbrc.2019.33958.1413.
7
Resistance and Raman spectroscopy analysis of Parageobacillus thermantarcticus spores after γ-ray exposure.
Extremophiles. 2018 Nov;22(6):931-941. doi: 10.1007/s00792-018-1049-0. Epub 2018 Aug 17.
8
Variability in DPA and Calcium Content in the Spores of Species.
Front Microbiol. 2016 Nov 11;7:1791. doi: 10.3389/fmicb.2016.01791. eCollection 2016.
9
Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores.
Appl Environ Microbiol. 2016 Sep 16;82(19):5775-84. doi: 10.1128/AEM.01669-16. Print 2016 Oct 1.
10
Effects of High-Pressure Treatment on Spores of Clostridium Species.
Appl Environ Microbiol. 2016 Aug 15;82(17):5287-97. doi: 10.1128/AEM.01363-16. Print 2016 Sep 1.

本文引用的文献

1
Raman spectroscopy for the detection of cancers and precancers.
J Biomed Opt. 1996 Jan;1(1):31-70. doi: 10.1117/12.227815.
2
Elastic light-scattering measurements of single biological cells in an optical trap.
Appl Opt. 1996 Feb 1;35(4):729-34. doi: 10.1364/AO.35.000729.
3
Characterization of single heat-activated Bacillus spores using laser tweezers Raman spectroscopy.
Opt Express. 2009 Sep 14;17(19):16480-91. doi: 10.1364/OE.17.016480.
4
Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation.
J Bacteriol. 2009 Sep;191(18):5584-91. doi: 10.1128/JB.00736-09. Epub 2009 Jul 10.
6
On the origin of heterogeneity in (preservation) resistance of Bacillus spores: input for a 'systems' analysis approach of bacterial spore outgrowth.
Int J Food Microbiol. 2009 Aug 31;134(1-2):9-15. doi: 10.1016/j.ijfoodmicro.2009.02.011. Epub 2009 Feb 21.
7
Analysis of damage due to moist heat treatment of spores of Bacillus subtilis.
J Appl Microbiol. 2009 May;106(5):1600-7. doi: 10.1111/j.1365-2672.2008.04127.x. Epub 2009 Feb 16.
9
Release of small molecules during germination of spores of Bacillus Species.
J Bacteriol. 2008 Jul;190(13):4759-63. doi: 10.1128/JB.00399-08. Epub 2008 May 9.
10
Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis.
J Bacteriol. 2008 Jul;190(14):4798-807. doi: 10.1128/JB.00477-08. Epub 2008 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验