Suppr超能文献

具有分层电极组件的空气阴极微生物燃料电池的性能和微生物生态学。

Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

机构信息

Department of Civil Engineering and Geological Science, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Appl Microbiol Biotechnol. 2010 May;86(5):1399-408. doi: 10.1007/s00253-009-2421-x. Epub 2010 Jan 23.

Abstract

Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

摘要

微生物燃料电池 (MFC) 可以采用分层电极组件构建,其中阳极、质子交换膜 (PEM) 和阴极被压成一个单元。我们研究了具有分层组件的 MFC 的性能和微生物群落结构,解决了材料和氧气交叉对群落结构的影响。使用 Nafion 或 Ultrex PEM 和普通碳布电极或带有耐氧聚四氟乙烯扩散层的阴极,构建了四个具有分层组件的 MFC。具有 Nafion PEM 和阴极扩散层的 MFC 实现了最高的功率密度,为 381 mW/m²(20 W/m³)。与具有扩散层阴极的 MFC 相比,具有普通阴极的 MFC 中氧气从阴极扩散到阳极的速率要高三倍。微传感器研究表明,阳极布内氧气积累很少。然而,在具有普通阴极的 MFC 中,已知以氧气作为电子受体但没有已知的外电子供体活性的细菌丰度更高。具有扩散层阴极的 MFC 中,属 Geobacter 的外电子供体细菌丰度很高。这项工作表明,阴极材料可以显著影响氧气交叉和阳极上的外电子供体细菌的相对丰度,而 PEM 材料对阳极群落结构几乎没有影响。我们的结果表明,氧气交叉会显著降低具有分层组件的空气阴极 MFC 的性能,因此限制交叉可能对这些类型的 MFC 特别重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验