Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea.
BMC Bioinformatics. 2010 Jan 26;11:50. doi: 10.1186/1471-2105-11-50.
The selection of genes that discriminate disease classes from microarray data is widely used for the identification of diagnostic biomarkers. Although various gene selection methods are currently available and some of them have shown excellent performance, no single method can retain the best performance for all types of microarray datasets. It is desirable to use a comparative approach to find the best gene selection result after rigorous test of different methodological strategies for a given microarray dataset.
FiGS is a web-based workbench that automatically compares various gene selection procedures and provides the optimal gene selection result for an input microarray dataset. FiGS builds up diverse gene selection procedures by aligning different feature selection techniques and classifiers. In addition to the highly reputed techniques, FiGS diversifies the gene selection procedures by incorporating gene clustering options in the feature selection step and different data pre-processing options in classifier training step. All candidate gene selection procedures are evaluated by the .632+ bootstrap errors and listed with their classification accuracies and selected gene sets. FiGS runs on parallelized computing nodes that capacitate heavy computations. FiGS is freely accessible at http://gexp.kaist.ac.kr/figs.
FiGS is an web-based application that automates an extensive search for the optimized gene selection analysis for a microarray dataset in a parallel computing environment. FiGS will provide both an efficient and comprehensive means of acquiring optimal gene sets that discriminate disease states from microarray datasets.
从微阵列数据中选择区分疾病类别的基因已广泛用于鉴定诊断生物标志物。尽管目前有多种基因选择方法,其中一些方法表现出色,但没有一种方法可以为所有类型的微阵列数据集保留最佳性能。对于给定的微阵列数据集,期望使用比较方法在严格测试不同方法策略后找到最佳的基因选择结果。
FiGS 是一个基于网络的工作平台,可自动比较各种基因选择程序,并为输入微阵列数据集提供最佳的基因选择结果。FiGS 通过对齐不同的特征选择技术和分类器来构建多样化的基因选择程序。除了声誉很高的技术外,FiGS 通过在特征选择步骤中纳入基因聚类选项和在分类器训练步骤中纳入不同的数据预处理选项来使基因选择程序多样化。所有候选基因选择程序都通过.632+ 引导错误进行评估,并列出其分类准确性和选定的基因集。FiGS 在并行计算节点上运行,这些节点能够进行繁重的计算。FiGS 可在 http://gexp.kaist.ac.kr/figs 上免费获得。
FiGS 是一个基于网络的应用程序,可在并行计算环境中自动为微阵列数据集的优化基因选择分析进行广泛搜索。FiGS 将为从微阵列数据集中区分疾病状态提供高效且全面的获取最佳基因集的方法。