Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, 50100, Mikkeli, Finland.
Environ Sci Pollut Res Int. 2010 May;17(4):875-84. doi: 10.1007/s11356-009-0291-5. Epub 2010 Jan 26.
BACKGROUND, AIM, AND SCOPE: Chlorinated volatile organic compounds (CVOCs), widely used in industry as solvents and chemical intermediates in the production of synthetic resins, plastics, and pharmaceuticals, are highly toxic to the environment and public health. Various studies reported that Fenton's oxidation could degrade a variety of chlorinated VOCs in aqueous solutions. In acidic conditions, ferrous ion catalyzes the decomposition of H2O2 to form a powerful *OH radical. In this study, wastewater from wash of ion-exchange resin containing typical CVOC, 1,2-dichloroethane, was treated using Fenton's oxidation. To reduce environmental load and processing costs of wastewater, Fenton process as a simple and efficient treatment method was applied to degrade 1,2-dichloroethane of wash water.
The water samples were collected from three different washing stages of ion-exchange resin. The degradation of 1,2-dichloroethane and total organic carbon (TOC) of wash water of ion-exchange resin by Fenton process was studied with response surface method (RSM). Design of the experiments was conducted by central composite face, and factors included in three models were Fe2+ and H2O2 doses and treatment time. Relevant quadratic and interaction terms of factors were investigated.
According to ANOVA, the model predicts well 1,2-dichloroethane reduction of all water samples and TOC reduction of samples 2 and 3. The Fe2+ and H2O2 doses used in the present study were most suitable when 1,2-dichloroethane concentration of the wash water is about 120 mg L(-1). In that case, Fenton's oxidation reduced 1,2-dichloroethane and TOC up to 100% and 87%, respectively, according to the RSM model. With 90-min reaction time and H2O2 dose of 1,200 mg L(-1), the required Fe2+ doses for 1,2-dichloroethane and TOC were 300 and 900 mg L(-1), respectively. The optimal H2O2/Fe2+ stoichiometric molar ratio was between 4-6. Then, concentration of Fe2+ was low enough and the amount of residual sludge can thus be reduced. It seems that most of TOC and part of 1,2-dichloroethane were removed by coagulation.
Up to a certain extent, increase of Fe2+ and H2O2 doses improved the removal of 1,2-dichloroethane and TOC. High Fe2+ doses increased the formation of ferric-based sludge, and excessive H2O2 doses in sample 2 decreased the degradation of 1,2-dichloroethane. Excess amount of hydrogen peroxide may scavenge hydroxyl radicals, thus leading to loss of oxidative power. Also, the residual hydrogen peroxide of different samples increased with increasing H2O2 dose and H2O2/Fe2+ molar ratio and decreasing treatment time probably also due to scavenging reactions. Due to the saturated nature of 1,2-dichloroethane, the oxidation mechanism involves hydrogen abstraction before addition of hydroxyl radical, thus leading to lower rate constants than for direct hydroxyl radical attack, which for one increases the treatment time.
Complete removal of 1,2-dichloroethane was attained with initial concentration<120 mg L(-1). Also, TOC degraded effectively. Wash water with higher concentration of 1,2-dichloroethane requires longer treatment times and higher concentrations of Fe2+ and H2O2 for sufficient 1,2-dichloroethane removal.
Due to the results achieved in this study, Fenton's oxidation could be recommended to be used for organic destruction of wash water of ion-exchange resin. Residual sludge, the main disadvantage in Fenton process, can be reduced by optimizing the ferrous dose or by using heterogeneous treatment where most of the reusable iron remains in the solid phase.
背景、目的和范围:氯化挥发性有机化合物 (CVOCs) 广泛用作工业溶剂和合成树脂、塑料和制药生产中的化学中间体,对环境和公共健康有很高的毒性。各种研究表明,芬顿氧化可以降解水溶液中的多种氯化 VOCs。在酸性条件下,二价铁离子催化 H2O2 分解形成强大的 *OH 自由基。在这项研究中,使用芬顿氧化法处理含有典型 CVOC 1,2-二氯乙烷的离子交换树脂洗涤废水。为了降低废水的环境负荷和处理成本,芬顿工艺作为一种简单高效的处理方法,用于降解离子交换树脂洗涤水中的 1,2-二氯乙烷。
水样取自离子交换树脂的三个不同洗涤阶段。采用响应面法 (RSM) 研究了 Fenton 工艺对离子交换树脂洗涤水的 1,2-二氯乙烷和总有机碳 (TOC) 的降解。实验设计采用中心复合面,包括 Fe2+和 H2O2 剂量以及处理时间三个模型中的因素。研究了因素的相关二次项和交互项。
根据方差分析,该模型很好地预测了所有水样的 1,2-二氯乙烷去除率和样品 2 和 3 的 TOC 去除率。当洗涤水的 1,2-二氯乙烷浓度约为 120mg/L 时,本研究中使用的 Fe2+和 H2O2 剂量最适合。在这种情况下,根据 RSM 模型,芬顿氧化可将 1,2-二氯乙烷和 TOC 分别降低 100%和 87%。在 90 分钟的反应时间和 1,200mg/L 的 H2O2 剂量下,1,2-二氯乙烷和 TOC 的所需 Fe2+剂量分别为 300 和 900mg/L。最佳的 H2O2/Fe2+摩尔比在 4-6 之间。然后,Fe2+的浓度足够低,因此可以减少剩余污泥的量。似乎大部分 TOC 和部分 1,2-二氯乙烷是通过混凝去除的。
在一定程度上,增加 Fe2+和 H2O2 剂量可以提高 1,2-二氯乙烷和 TOC 的去除率。高浓度的 Fe2+会增加铁基污泥的形成,而过量的 H2O2 剂量会降低样品 2 中 1,2-二氯乙烷的降解。过量的过氧化氢可能会捕获羟基自由基,从而导致氧化能力丧失。此外,不同样品的剩余过氧化氢随着 H2O2 剂量和 H2O2/Fe2+摩尔比的增加以及处理时间的减少而增加,这可能是由于猝灭反应所致。由于 1,2-二氯乙烷的饱和性质,氧化机制涉及羟基自由基加成之前的氢提取,因此导致比直接羟基自由基攻击的速率常数低,这会增加处理时间。
初始浓度<120mg/L 时可实现 1,2-二氯乙烷的完全去除。此外,TOC 也得到了有效降解。对于较高浓度的 1,2-二氯乙烷,需要更长的处理时间和更高浓度的 Fe2+和 H2O2 才能充分去除 1,2-二氯乙烷。
鉴于本研究取得的成果,芬顿氧化法可推荐用于离子交换树脂洗涤水的有机破坏。通过优化亚铁剂量或使用大多数可重复使用的铁留在固相的多相处理,可以减少芬顿工艺的主要缺点——剩余污泥。