The Dow Chemical Company, P.O. Box 48, 4530 AA Terneuzen, The Netherlands.
Anal Chim Acta. 2010 Feb 5;659(1-2):68-84. doi: 10.1016/j.aca.2009.11.032. Epub 2009 Nov 20.
ISO Standard 5725 "Accuracy (trueness and precision) of measurement methods and results" recommends Cochran's C test to numerically verify if three or more normally distributed data sets show "homogeneity of variances" or "homoscedasticity". The C test is a one-sided outlier test that will identify deviant standard deviations. It can be run on summary data using a pocket calculator. However, the C test has limitations. It only applies to data sets of equal size. It uses critical values that are only available for the upper tail of the variance distribution, at selected numbers of data sets, selected numbers of replicates per set and only at two significance levels. Cochran's C test will not identify an outlying low variance, but may mistake a high variance for an outlier instead. We transform the C test into a more general "G test". Expressions are derived to calculate upper limit as well as lower limit critical values for data sets of equal and unequal size at any significance level. The expressions are validated against literature values and through simulations in Excel. Representative critical values are tabulated for those who prefer to work from tables. The power of the G test is verified for data sets of equal and unequal size. The G test appears superior to the C test in detecting effects from low variances. The G test allows positive identification of exceptionally low variances. The application of the G test is illustrated with a numerical example.
ISO 标准 5725《测量方法和结果的准确度(正确度和精密度)》推荐 Cochran 的 C 检验来数值验证三个或更多正态分布数据集是否具有“方差同质性”或“等方差性”。C 检验是一种单边离群值检验,可识别异常的标准差。它可以使用袖珍计算器对汇总数据进行运行。但是,C 检验有局限性。它仅适用于大小相等的数据集。它使用仅在方差分布的上尾处,在选定数量的数据集、每集选定数量的重复以及仅在两个显著水平下可用的临界值。Cochran 的 C 检验不会识别异常低值的方差,但可能会将高方差误认为离群值。我们将 C 检验转换为更通用的“G 检验”。推导了表达式,以便在任何显著水平下计算大小相等和不等数据集的上限和下限临界值。通过文献值和 Excel 中的模拟验证了表达式的有效性。对于那些喜欢从表格中工作的人,列出了代表性的临界值。验证了大小相等和不等数据集的 G 检验的功效。G 检验在检测来自低方差的影响方面似乎优于 C 检验。G 检验允许对异常低的方差进行阳性识别。通过数值示例说明了 G 检验的应用。