Mayock D E, Standaert T A, Murphy T D, Woodrum D E
Department of Pediatrics, University of Washington School of Medicine, Seattle 98195.
J Appl Physiol (1985). 1991 Jan;70(1):70-6. doi: 10.1152/jappl.1991.70.1.70.
Inspiratory resistive loaded (IRL) breathing results in hypoventilation and diaphragmatic fatigue in the piglet. We studied the effects of 6 h of IRL on ten 1-mo-old piglets. The load was adjusted to increase spontaneously generated transdiaphragmatic pressure five to six times baseline. Six 1-mo-old piglets acted as controls and were identically instrumented but were not subjected to IRL. Measurements of ventilation, blood gases and pH, diaphragmatic electromyogram, force-frequency curve, blood flow, and end-expiratory lung volume were obtained hourly. Diaphragmatic muscle samples were obtained after 6 h for determination of ATP, phosphocreatine, lactate, and glycogen levels. No changes occurred in the control animals. IRL resulted in a significant decrease in ventilation, an increase in diaphragmatic EMG, onset of abdominal expiratory muscle activity, and a fall in end-expiratory lung volume by 1 h. The force-frequency curve adjusted for lung volume change fell by 20% at all frequencies of stimulation at 1 h and by 40% at 6 h. Blood flow to the costal and crural diaphragm increased by 51 and 141%, respectively. No differences were noted in ATP, phosphocreatine, lactate, or glycogen between control and IRL animals. It is concluded that submaximal spontaneous contractions of the piglet diaphragm over a 6-h period cause a substantial decrease in its maximal force-generating capacity that is not related to substrate depletion.