Suppr超能文献

贝叶斯推断法估计摩拉水牛产奶量的遗传参数。

Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

机构信息

Universidade Federal de Santa Maria (UFSM), 98300-000, Palmeira das Missões, RS, Brazil.

出版信息

J Dairy Sci. 2010 Feb;93(2):784-91. doi: 10.3168/jds.2009-2230.

Abstract

Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications.

摘要

采用贝叶斯推理方法,利用随机回归模型估计摩拉水牛泌乳日产量的遗传参数。数据包括 1433 头水牛的 17935 个泌乳日记录。使用不同的第三、第四、第五、第六和第七阶的加性遗传和永久环境效应的正交多项式组合,测试了 12 种模型。所有模型均包括群体当代、每日挤奶次数和产犊时奶牛年龄的固定效应作为协变量(线性和二次效应)。此外,还考虑了残差方差的异质性,具有 6 个方差类。模型选择基于残差均方误差、残差方差估计的加权平均值和方差分量、遗传力、相关性、特征值和特征函数的估计。结果表明,加性遗传和永久环境随机效应拟合阶数的变化会影响遗传参数的估计。遗传力估计值在 0.19 到 0.31 之间。相邻泌乳日记录之间的遗传相关性估计值接近 1,但随着泌乳日之间间隔的增加,逐渐降低。残差方差估计的均方误差和加权平均值的结果表明,考虑加性和永久环境效应的第六和第七阶勒让德多项式,以及残差方差的 6 个类别的模型提供了最佳拟合。然而,该模型具有最大的复杂性。一个更简约的模型,对于相同的效应,分别采用第四和第六阶多项式,也能得到非常相似的遗传参数估计值。因此,建议在常规应用中使用最后一个模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验