School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China.
Langmuir. 2010 May 18;26(10):7437-43. doi: 10.1021/la9041474.
We describe a facile route to the straightforward fabrication of nanoporous (NP) PtRu alloys with predetermined bimetallic compositions. Electron microscopy and X-ray diffraction characterizations demonstrate that selective etching of Al from ternary PtRuAl source alloys generates three-dimensional bicontinuous NP-PtRu alloy nanostructures with a single-phase face-centered-cubic crystalline structure. X-ray photoelectron spectroscopy shows a slight electronic structure modification of Pt by alloying with Ru as well as uniform surface and bulk bimetallic ratio. With characteristic structural dimensions less than 5 nm, these high surface area bimetallic nanostructures show distinct electrocatalytic performance as the Ru content varies within the structure. Among all samples, NP-Pt(70)Ru(30) shows the highest specific activity as well as the most negative onset potential toward methanol oxidation reaction. NP-Pt(50)Ru(50) was found to possess a similar specific activity to the commercial E-TEK Pt(50)Ru(50)/C catalyst, but its onset and peak potentials are about 70 mV more negative. CO stripping experiments demonstrate that the adsorption of CO is the weakest on NP-Pt(70)Ru(30), and further increasing the Ru content actually shifts the CO stripping peak to a more positive potential. Thus, the overall sequence for CO-tolerance is NP-Pt(70)Ru(30) > NP-Pt(50)Ru(50) approximately = Pt(50)Ru(50)/C > NP-Pt(30)Ru(70) > Pt/C.
我们描述了一种简便的方法,可以直接制备具有预定双金属组成的纳米多孔(NP)PtRu 合金。电子显微镜和 X 射线衍射表征表明,从三元 PtRuAl 源合金中选择性刻蚀 Al 会生成具有单相面心立方晶体结构的三维双连续 NP-PtRu 合金纳米结构。X 射线光电子能谱表明,Pt 与 Ru 合金化后会略微改变电子结构,并且表面和体相的双金属比例均匀。这些高表面积的双金属纳米结构的特征结构尺寸小于 5nm,随着结构中 Ru 含量的变化,表现出明显的电催化性能。在所有样品中,NP-Pt(70)Ru(30) 表现出最高的比活性以及对甲醇氧化反应的最负起始电位。NP-Pt(50)Ru(50) 被发现具有与商业 E-TEK Pt(50)Ru(50)/C 催化剂相似的比活性,但起始和峰值电位约负 70mV。CO 剥离实验表明,在 NP-Pt(70)Ru(30) 上 CO 的吸附最弱,进一步增加 Ru 含量实际上会将 CO 剥离峰移至更正的电位。因此,CO 耐受性的总体顺序为 NP-Pt(70)Ru(30) > NP-Pt(50)Ru(50)≈Pt(50)Ru(50)/C > NP-Pt(30)Ru(70) > Pt/C。