Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
J Phys Chem A. 2010 Feb 25;114(7):2576-87. doi: 10.1021/jp904549d.
Time-dependent Hartree-Fock simulations for a linear triatomic molecule (CO(2)) interacting with a short IR (1.63 eV) three-cycle pulse reveal that the carrier-envelope shape and phase are the essential field parameters determining the bound state electron dynamics during and after the laser-molecule interaction. Analysis of the induced dipole oscillation reveals that the envelope shape (Gaussian or trapezoidal) controls the excited state population distribution. Varying the carrier envelope phase for each of the two pulse envelope shapes considerably changes the excited state populations. Increasing the electric field amplitude alters the relative populations of the excited states, generally exciting higher states. A windowed Fourier transform analysis of the dipole evolution during the laser pulse reveals the dynamics of state excitation and in particular state coupling as the laser intensity increases.
时间相关的 Hartree-Fock 模拟表明,对于与短红外(1.63 eV)三周期脉冲相互作用的线性三原子分子(CO2),载波包络形状和相位是决定激光分子相互作用期间和之后束缚态电子动力学的基本场参数。对感应偶极振荡的分析表明,包络形状(高斯或梯形)控制激发态的粒子数分布。对于两种脉冲包络形状中的每一种,改变载波包络相位都会极大地改变激发态的粒子数。增加电场幅度会改变激发态的相对粒子数,通常会激发更高的态。激光脉冲期间偶极子演化的窗口傅里叶变换分析揭示了随着激光强度的增加,激发态和特别是态耦合的动力学。