Suppr超能文献

空肠弯曲菌 RdxA 和 RdxB 硝基还原酶的功能分析表明,rdxA 突变可导致甲硝唑耐药。

Functional analysis of the RdxA and RdxB nitroreductases of Campylobacter jejuni reveals that mutations in rdxA confer metronidazole resistance.

机构信息

University of Texas Southwestern Medical School, Department of Microbiology, Dallas, TX 75390-9048, USA.

出版信息

J Bacteriol. 2010 Apr;192(7):1890-901. doi: 10.1128/JB.01638-09. Epub 2010 Jan 29.

Abstract

Campylobacter jejuni is a leading cause of gastroenteritis in humans and a commensal bacterium of the intestinal tracts of many wild and agriculturally significant animals. We identified and characterized a locus, which we annotated as rdxAB, encoding two nitroreductases. RdxA was found to be responsible for sensitivity to metronidazole (Mtz), a common therapeutic agent for another epsilonproteobacterium, Helicobacter pylori. Multiple, independently derived mutations in rdxA but not rdxB resulted in resistance to Mtz (Mtz(r)), suggesting that, unlike the case in H. pylori, Mtz(r) might not be a polygenic trait. Similarly, Mtz(r) C. jejuni was isolated after both in vitro and in vivo growth in the absence of selection that contained frameshift, point, insertion, or deletion mutations within rdxA, possibly revealing genetic variability of this trait in C. jejuni due to spontaneous DNA replication errors occurring during normal growth of the bacterium. Similar to previous findings with H. pylori RdxA, biochemical analysis of C. jejuni RdxA showed strong oxidase activity, with reduction of Mtz occurring only under anaerobic conditions. RdxB showed similar characteristics but at levels lower than those for RdxA. Genetic analysis confirmed that rdxA and rdxB are cotranscribed and induced during in vivo growth in the chick intestinal tract, but an absence of these genes did not strongly impair C. jejuni for commensal colonization. Further studies indicate that rdxA is a convenient locus for complementation of mutants in cis. Our work contributes to the growing knowledge of determinants contributing to susceptibility to Mtz (Mtz(s)) and supports previous observations of the fundamental differences in the activities of nitroreductases from epsilonproteobacteria.

摘要

空肠弯曲菌是人类肠胃炎的主要病原体,也是许多野生动物和农业重要动物肠道共生菌。我们鉴定并描述了一个编码两个硝基还原酶的基因座,我们将其注释为 rdxAB。发现 RdxA 负责对甲硝唑(Mtz)的敏感性,Mtz 是另一种 ε 变形菌幽门螺杆菌的常用治疗药物。rdxA 中多个独立获得的突变而不是 rdxB 导致对 Mtz(Mtz(r))的耐药性,这表明与幽门螺杆菌的情况不同,Mtz(r) 可能不是一个多基因特征。同样,在没有选择的情况下,无论是在体外还是体内生长,都分离到了 Mtz(r)空肠弯曲菌,这其中包含 rdxA 内的移码、点突变、插入或缺失突变,这可能揭示了由于在细菌正常生长过程中自发发生 DNA 复制错误,该特征在空肠弯曲菌中的遗传变异性。类似于之前在幽门螺杆菌 RdxA 中的发现,对空肠弯曲菌 RdxA 的生化分析表明其具有很强的氧化酶活性,只有在厌氧条件下才会发生 Mtz 的还原。RdxB 表现出相似的特征,但水平低于 RdxA。遗传分析证实 rdxA 和 rdxB 是共转录的,并在鸡肠道体内生长过程中被诱导,但这些基因的缺失并没有强烈削弱空肠弯曲菌的共生定植能力。进一步的研究表明,rdxA 是顺式互补突变体的方便基因座。我们的工作有助于增加对甲硝唑(Mtz(s))敏感性决定因素的认识,并支持之前关于 ε 变形菌硝基还原酶活性的基本差异的观察结果。

相似文献

3
Characterization of the NAD(P)H oxidase and metronidazole reductase activities of the RdxA nitroreductase of Helicobacter pylori.
FEBS J. 2009 Jun;276(12):3354-64. doi: 10.1111/j.1742-4658.2009.07060.x. Epub 2009 May 7.
7
Antimicrobial susceptibility and resistance patterns among Helicobacter pylori strains from The Gambia, West Africa.
Antimicrob Agents Chemother. 2013 Mar;57(3):1231-7. doi: 10.1128/AAC.00517-12. Epub 2012 Dec 21.
9
Lon protease affects the RdxA nitroreductase activity and metronidazole susceptibility in Helicobacter pylori.
Helicobacter. 2014 Oct;19(5):356-66. doi: 10.1111/hel.12140. Epub 2014 May 19.

引用本文的文献

1
Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni.
Nat Commun. 2024 Jun 19;15(1):5240. doi: 10.1038/s41467-024-48986-8.
2
Modulation of Iron Import and Metronidazole Resistance in Harboring a Gene.
Front Microbiol. 2022 Jun 9;13:898453. doi: 10.3389/fmicb.2022.898453. eCollection 2022.
4
BumSR directs a response to butyrate via sensor phosphatase activity to impact transcription and colonization.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11715-11726. doi: 10.1073/pnas.1922719117. Epub 2020 May 12.
5
A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni.
PLoS Pathog. 2020 Feb 18;16(2):e1008304. doi: 10.1371/journal.ppat.1008304. eCollection 2020 Feb.

本文引用的文献

1
Characterization of the NAD(P)H oxidase and metronidazole reductase activities of the RdxA nitroreductase of Helicobacter pylori.
FEBS J. 2009 Jun;276(12):3354-64. doi: 10.1111/j.1742-4658.2009.07060.x. Epub 2009 May 7.
2
Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni.
J Bacteriol. 2009 Jun;191(12):3785-93. doi: 10.1128/JB.01817-08. Epub 2009 Apr 17.
3
Activation of the Campylobacter jejuni FlgSR two-component system is linked to the flagellar export apparatus.
J Bacteriol. 2009 Apr;191(8):2656-67. doi: 10.1128/JB.01689-08. Epub 2009 Feb 6.
4
Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni.
Mol Microbiol. 2008 Oct;70(2):519-36. doi: 10.1111/j.1365-2958.2008.06428.x. Epub 2008 Aug 29.
5
Reduction of polynitroaromatic compounds: the bacterial nitroreductases.
FEMS Microbiol Rev. 2008 May;32(3):474-500. doi: 10.1111/j.1574-6976.2008.00107.x. Epub 2008 Mar 18.
7
Genetic instability is associated with changes in the colonization potential of Campylobacter jejuni in the avian intestine.
J Appl Microbiol. 2008 Jul;105(1):95-104. doi: 10.1111/j.1365-2672.2008.03759.x. Epub 2008 Feb 20.
10
Genome dynamics of Campylobacter jejuni in response to bacteriophage predation.
PLoS Pathog. 2007 Aug 24;3(8):e119. doi: 10.1371/journal.ppat.0030119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验