Department of Biology, Duke University, Durham, North Carolina 27708, USA.
Ecology. 2009 Dec;90(12):3352-66. doi: 10.1890/08-1609.1.
Atmospheric CO2 concentrations have risen 40% since the start of the industrial revolution. Beginning in 1996, the Duke Free-Air CO2 Enrichment experiment has exposed plots in a loblolly pine forest to an additional 200 microL/L CO2 compared to trees growing in ambient CO2. This paper presents new belowground data and a synthesis of results through 2008, including root biomass and nutrient concentrations, soil respiration rates, soil pore-space CO2 concentrations, and soil-solution chemistry to 2 m depth. On average in elevated CO2, fine-root biomass in the top 15 cm of soil increased by 24%, or 59 g/m2 (26 g/m2 C). Coarse-root biomass sampled in 2008 was twice as great in elevated CO2 and suggests a storage of approximately 20 g C x m(-2) x yr(-1). Root C and N concentrations were unchanged, suggesting greater belowground plant demand for N in high CO2. Soil respiration was significantly higher by 23% on average as assessed by instantaneous infrared gas analysis and 24-h integrated estimates. N fertilization decreased soil respiration and fine-root biomass by approximately 10-20% in both ambient and elevated CO2. In recent years, increases in root biomass and soil respiration grew stronger, averaging approximately 30% at high CO2. Peak changes for root biomass, soil respiration, and other variables typically occurred in midsummer and diminished in winter. Soil CO2 concentrations between 15 and 100 cm depths increased 36-60% in elevated CO2. Differences from 30 cm depth and below were still increasing after 10 years' exposure to elevated CO2, with soil CO2 concentrations >10000 microL/L higher at 70- and 100-cm depths, potentially influencing soil acidity and rates of weathering. Soil solution Ca2+ and total base cation concentrations were 140% and 176% greater, respectively, in elevated CO2 at 200 cm depth. Similar increases were observed for soil-solution conductivity and alkalinity at 200 cm in elevated CO2. Overall, the effect of elevated CO2 belowground shows no sign of diminishing after more than a decade of CO2 enrichment.
自工业革命以来,大气中二氧化碳的浓度已经上升了 40%。自 1996 年以来,杜克大学自由空气 CO2 增施实验将一片火炬松林地中的树木暴露于额外的 200 微升/升 CO2 中,而这些树木生长在大气 CO2 中。本文介绍了新的地下数据,并综合了截至 2008 年的结果,包括根系生物量和养分浓度、土壤呼吸速率、土壤孔隙空间 CO2 浓度以及 2 米深的土壤溶液化学。在高 CO2 下,平均每升高 15 厘米土壤中的细根生物量增加了 24%,即 59 克/平方米(26 克/平方米 C)。2008 年采集的粗根生物量在高 CO2 下是两倍,表明大约有 20 克 C x m(-2) x yr(-1)的储存。根 C 和 N 浓度不变,表明高 CO2 下植物对 N 的地下需求更大。通过即时红外气体分析和 24 小时综合估算,土壤呼吸平均高出 23%。在大气和高 CO2 下,N 施肥使土壤呼吸和细根生物量减少了大约 10-20%。近年来,根系生物量和土壤呼吸的增加变得更强,高 CO2 下平均增加了约 30%。根系生物量、土壤呼吸和其他变量的峰值变化通常发生在仲夏,冬季减少。在高 CO2 下,15 至 100 厘米深度之间的土壤 CO2 浓度增加了 36-60%。在暴露于高 CO2 10 年后,30 厘米以下的土壤 CO2 浓度仍在增加,70-100 厘米深处的土壤 CO2 浓度高于 10000 微升/升,可能影响土壤酸度和风化速率。在高 CO2 下,200 厘米深度的土壤溶液 Ca2+和总碱基阳离子浓度分别增加了 140%和 176%。在高 CO2 下,200 厘米处土壤溶液电导率和碱度也有类似的增加。总的来说,在 CO2 富集超过十年后,地下 CO2 的影响没有减弱的迹象。