Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.
Langmuir. 2010 Apr 20;26(8):6028-32. doi: 10.1021/la903799n.
This study describes a facile approach to the preparation of integrated dehydrogenase-based electrochemical biosensors through noncovalent attachment of an oxidized form of beta-nicotinamide adenine dinucleotide (NAD(+)) onto carbon nanotubes with the interaction between the adenine subunit in NAD(+) molecules and multiwalled carbon nanotubes (MWCNTs). X-ray photoelectron spectroscopic and cyclic voltammetric results suggest that NAD(+) is noncovalently attached onto MWCNTs to form an NAD(+)/MWCNT composite that acts as the electronic transducer for the integrated dehydrogenase-based electrochemical biosensors. With glucose dehydrogenase (GDH) as a model dehydrogenase-based recognition unit, electrochemical studies reveal that glucose is readily oxidized at the GDH/NAD(+)/MWCNT-modified electrode without addition of NAD(+) in the phosphate buffer. The potential for the oxidation of glucose at the GDH/NAD(+)/MWCNT-modified electrode remains very close to that for NADH oxidation at the MWCNT-modified electrode, but it is more negative than those for the oxidation of glucose at the MWCNT-modified electrode and for NADH oxidation at a bare glassy carbon electrode. These results demonstrate that NAD(+) molecules stably attached onto MWCNTs efficiently act as the cofactor for the dehydrogenases. MWCNTs employed here not only serve as the electronic transducer and the support to confine NAD(+) cofactor onto the electrode surface, but also act as the electrocatalyst for NADH oxidation in the dehydrogenase-based electrochemical biosensors. At the GDH/NAD(+)/MWCNT-based glucose biosensor, the current is linear with the concentration of glucose being within a concentration range from 10 to 300 microM with a limit of detection down to 4.81 microM (S/N = 3). This study offers a facile and versatile approach to the development of integrated dehydrogenase-based electrochemical devices, such as electrochemical biosensors and biofuel cells.
本研究描述了一种简便的方法,通过β-烟酰胺腺嘌呤二核苷酸(NAD(+))的氧化形式与多壁碳纳米管之间的相互作用,非共价附着在碳纳米管上,从而制备基于整合脱氢酶的电化学生物传感器。X 射线光电子能谱和循环伏安法结果表明,NAD(+)通过非共价键附着在 MWCNT 上形成 NAD(+)/MWCNT 复合材料,该复合材料作为基于整合脱氢酶的电化学生物传感器的电子转换器。以葡萄糖脱氢酶(GDH)作为模型基于脱氢酶的识别单元,电化学研究表明,在磷酸盐缓冲液中无需添加 NAD(+)即可在 GDH/NAD(+)/MWCNT 修饰电极上容易地氧化葡萄糖。在 GDH/NAD(+)/MWCNT 修饰电极上氧化葡萄糖的电位非常接近 MWCNT 修饰电极上 NADH 氧化的电位,但比 MWCNT 修饰电极上葡萄糖氧化的电位和裸玻碳电极上 NADH 氧化的电位更负。这些结果表明,稳定附着在 MWCNT 上的 NAD(+)分子有效地作为脱氢酶的辅酶发挥作用。此处使用的 MWCNT 不仅作为电子换能器和支撑物将辅酶 NAD(+)限制在电极表面上,而且还作为基于脱氢酶的电化学生物传感器中 NADH 氧化的电催化剂。在基于 GDH/NAD(+)/MWCNT 的葡萄糖生物传感器中,电流与葡萄糖浓度呈线性关系,葡萄糖浓度范围为 10 至 300 μM,检测限低至 4.81 μM(S/N = 3)。本研究为开发基于整合脱氢酶的电化学器件(如电化学生物传感器和生物燃料电池)提供了一种简便而通用的方法。