Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA.
J Am Chem Soc. 2010 Feb 24;132(7):2393-403. doi: 10.1021/ja909827v.
Amyloid aggregates of a C-truncated Y145Stop mutant of human prion protein, huPrP23-144, associated with a heritable amyloid angiopathy, have previously been shown to contain a compact, relatively rigid, and beta-sheet-rich approximately 30-residue amyloid core near the C-terminus under physiologically relevant conditions. In contrast, the remaining huPrP23-144 residues display considerable conformational dynamics, as evidenced by the absence of corresponding signals in cross-polarization (CP)-based solid-state NMR (SSNMR) spectra under ambient conditions and their emergence in analogous spectra recorded at low temperature on frozen fibril samples. Here, we present the direct observation of residues comprising the flexible N-terminal domain of huPrP23-144 amyloid by using 2D J-coupling-based magic-angle spinning (MAS) SSNMR techniques. Chemical shifts for these residues indicate that the N-terminal domain is effectively an ensemble of protein chains with random-coil-like conformations. Interestingly, a detailed analysis of signal intensities in CP-based 3D SSNMR spectra suggests that non-negligible molecular motions may also be occurring on the NMR time scale within the relatively rigid core of huPrP23-144 amyloid. To further investigate this hypothesis, quantitative measurements of backbone dipolar order parameters and transverse spin relaxation rates were performed for the core residues. The observed order parameters indicate that, on the submicrosecond time scale, these residues are effectively rigid and experience only highly restricted and relatively uniform motions similar to those characteristic for well-structured regions of microcrystalline proteins. On the other hand, significant variations in magnitude of transverse spin relaxation rates were noted for residues present at different locations within the core region and correlated with observed differences in spectral intensities. While interpreted only qualitatively at the present time, the extent of the observed variations in transverse relaxation rates is consistent with the presence of relatively slow, microsecond-millisecond time scale chemical exchange type phenomena within the huPrP23-144 amyloid core.
先前已经表明,与遗传性淀粉样血管病相关的人类朊蛋白 C 端截断 Y145Stop 突变体 huPrP23-144 的淀粉样物聚集物在生理相关条件下包含一个紧凑、相对刚性且富含β-折叠的大约 30 个残基的淀粉样核心,位于 C 端附近。相比之下,其余的 huPrP23-144 残基显示出相当大的构象动力学,这一点可以从在环境条件下基于交叉极化(CP)的固态 NMR(SSNMR)光谱中没有相应信号以及在低温下记录的类似纤维样品的光谱中出现这些信号得到证明。在这里,我们使用基于二维 J 耦合的魔角旋转(MAS)SSNMR 技术直接观察 huPrP23-144 淀粉样物中柔性 N 端结构域的残基。这些残基的化学位移表明,N 端结构域实际上是由具有无规卷曲构象的蛋白质链组成的混合物。有趣的是,对基于 CP 的 3D SSNMR 光谱中信号强度的详细分析表明,在 huPrP23-144 淀粉样物的相对刚性核心内,可能也会发生不可忽略的分子运动。为了进一步研究这一假说,对核心残基的骨架偶极顺序参数和横向自旋弛豫率进行了定量测量。观察到的顺序参数表明,在亚微秒时间尺度上,这些残基实际上是刚性的,仅经历高度受限且相对均匀的运动,类似于微晶蛋白质中特征性的结构区域。另一方面,在核心区域不同位置的残基的横向自旋弛豫率的幅度存在显著差异,并与观察到的光谱强度差异相关。虽然目前仅定性解释,但观察到的横向弛豫率变化程度与 huPrP23-144 淀粉样物核心内存在相对缓慢的微秒至毫秒时间尺度的化学交换类型现象是一致的。